Green hydrogen peroxide thanks to a new hydrogel

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 487598 [uid] => 26499 [title] => Green hydrogen peroxide thanks to a new hydrogel [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117470 [type] => box_lancio_news [language] => it [created] => 1742303878 [changed] => 1743669565 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1743669565 [revision_uid] => 4 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[summary] => [format] => 2 [safe_value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138310 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_1.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742303999 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => idrogel [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide [format] => [safe_value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2296 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => rossella.vezzosi [picture] => 0 [data] => b:0; [num_revisions] => 4 [current_revision_id] => 487598 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[summary] => [format] => 2 [safe_value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

Italian version

) ) [field_img_box_lancio_news] => Array ( [#theme] => field [#weight] => 0 [#title] => Immagine [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_img_box_lancio_news [#field_type] => image [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 487598 [uid] => 26499 [title] => Green hydrogen peroxide thanks to a new hydrogel [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117470 [type] => box_lancio_news [language] => it [created] => 1742303878 [changed] => 1743669565 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1743669565 [revision_uid] => 4 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[summary] => [format] => 2 [safe_value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138310 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_1.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742303999 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => idrogel [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide [format] => [safe_value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2296 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => rossella.vezzosi [picture] => 0 [data] => b:0; [num_revisions] => 4 [current_revision_id] => 487598 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [fid] => 138310 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_1.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742303999 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => idrogel [title] => ) ) [#formatter] => image [0] => Array ( [#theme] => image_formatter [#item] => Array ( [fid] => 138310 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_1.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742303999 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => idrogel [title] => ) [#image_style] => [#path] => ) ) [field_abstract_news] => Array ( [#theme] => field [#weight] => 0 [#title] => Abstract [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_abstract_news [#field_type] => text_long [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 487598 [uid] => 26499 [title] => Green hydrogen peroxide thanks to a new hydrogel [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117470 [type] => box_lancio_news [language] => it [created] => 1742303878 [changed] => 1743669565 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1743669565 [revision_uid] => 4 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[summary] => [format] => 2 [safe_value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138310 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_1.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742303999 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => idrogel [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide [format] => [safe_value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2296 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => rossella.vezzosi [picture] => 0 [data] => b:0; [num_revisions] => 4 [current_revision_id] => 487598 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide [format] => [safe_value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide ) ) [#formatter] => text_default [0] => Array ( [#markup] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide ) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Green hydrogen peroxide thanks to a new hydrogel [href] => node/117470 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Green hydrogen peroxide thanks to a new hydrogel ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) [field_date_box_lancio_news] => Array ( [#theme] => field [#weight] => 1 [#title] => Data [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_date_box_lancio_news [#field_type] => date [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 487598 [uid] => 26499 [title] => Green hydrogen peroxide thanks to a new hydrogel [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117470 [type] => box_lancio_news [language] => it [created] => 1742303878 [changed] => 1743669565 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1743669565 [revision_uid] => 4 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[summary] => [format] => 2 [safe_value] =>

Italian version

The University of Padua
, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide. Known for its oxidising and disinfecting properties, hydrogen peroxide is widely used in medical, industrial, and domestic settings. Traditionally, it is produced through the reduction of oxygen, a process that, despite its efficiency, faces sustainability issues due to the need for organic solvents, hydrogen, and noble metals. As a result, alternative methods using electric energy or sunlight are being explored.

The key to efficiently converting sunlight into chemical products appears to lie in movement, as seen in nature with plants using stomata to regulate photosynthesis, or in the human body with organs such as the heart and lungs.

By harnessing movement, the international team of researchers from the Universities of Padua and Northwestern (Chicago, USA) has developed a new material that makes the solar energy conversion process more efficient. The study, titled "Mechanical and Light Activation of Materials for Chemical Production," has been published in the scientific journal "Advanced Materials".

Current scientific studies typically test materials for artificial photosynthesis—research inspired by this natural process and referring to any system that captures and stores sunlight energy in the chemical bonds of a fuel—under static conditions, neglecting the effects of movement. The Padua and Northwestern researchers decided to examine these effects.

“To determine if movement could influence artificial photosynthesis, it was essential to create a new material,” explains Luka Ðorđević, the lead author of the research and a professor in the Department of Chemical Sciences at the University of Padua. “This material needed to absorb and convert sunlight and be smart enough to swell and contract in response to stimuli.”

The researchers developed a hydrogel that swells and contracts in response to stimuli, thus improving artificial photosynthesis. This hydrogel comprises two main components: a photocatalyst that enables the conversion of sunlight into chemical reactions and a thermoresponsive material that adapts to temperature changes. Studies have shown that when this new organic hydrogel is subjected to rapid cycles of contraction and expansion, it significantly increases the efficiency of hydrogen peroxide production. This mechanical movement accelerates the exchange of products and reagents, similar to how human organs function.

This innovative research, funded by the European Union through an ERC Starting Grant and led by Luka Ðorđević of the University of Padua, not only enhances the sustainability of chemical production but also has potential applications in other materials and reactions.

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138310 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_1.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742303999 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => idrogel [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide [format] => [safe_value] => The University of Padua, in collaboration with Northwestern University, has conducted research leading to the discovery of a new hydrogel that enhances the efficiency of converting sunlight into chemical products, such as hydrogen peroxide ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2296 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => rossella.vezzosi [picture] => 0 [data] => b:0; [num_revisions] => 4 [current_revision_id] => 487598 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) [#formatter] => date_default [0] => Array ( [#markup] => Mar, 18/03/2025 ) ) )

Procedura valutativa per Professore di seconda fascia 2025PA520

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => bandi [#object] => stdClass Object ( [vid] => 486268 [uid] => 32 [title] => Procedura valutativa per Professore di seconda fascia 2025PA520 [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117469 [type] => bandi [language] => it [created] => 1742302751 [changed] => 1742302751 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742302751 [revision_uid] => 32 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) ) [field_bandi_chiave_web] => Array ( [und] => Array ( [0] => Array ( [value] => web_2025PA520 [format] => [safe_value] => web_2025PA520 ) ) ) [field_bandi_oggetto] => Array ( [und] => Array ( [0] => Array ( [value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA520 - Dipartimento di Biologia - DiBio – Gruppo scientifico-disciplinare 05/BIOS-07 - BIOCHIMICA – Settore scientifico-disciplinare BIOS-07/A - BIOCHIMICA.

[format] => 2 [safe_value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA520 - Dipartimento di Biologia - DiBio – Gruppo scientifico-disciplinare 05/BIOS-07 - BIOCHIMICA – Settore scientifico-disciplinare BIOS-07/A - BIOCHIMICA.

) ) ) [field_bandi_protocollo] => Array ( ) [field_bandi_scadenza] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-04-10 13:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => datetime ) ) ) [field_foglia_semplice_allegato] => Array ( ) [field_bandi_data_pubblicazione] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-21 13:00:00 [timezone] => Europe/Paris [timezone_db] => UTC [date_type] => datetime ) ) ) [field_bandi_qualifica] => Array ( [und] => Array ( [0] => Array ( [tid] => 2648 ) ) ) [field_foglia_complessa_accordion] => Array ( [und] => Array ( [0] => Array ( [nid] => 111440 [access] => 1 ) [1] => Array ( [nid] => 111441 [access] => 1 ) ) ) [field_bandi_stato] => Array ( [und] => Array ( [0] => Array ( [value] => Aperto ) ) ) [field_avviso] => Array ( ) [field_dettagli_blocco_bandi] => Array ( ) [path] => Array ( [pathauto] => 0 ) [name] => stefano.zampieri [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:48:"form-WsCySmos4vAVlyFhG6gU5T7knfAyqco8LxlocSU_yIA";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 1 [current_revision_id] => 486268 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Procedura valutativa per Professore di seconda fascia 2025PA520 [href] => node/117469 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Procedura valutativa per Professore di seconda fascia 2025PA520 ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) )

Procedura valutativa per Professore di seconda fascia 2025PA519

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => bandi [#object] => stdClass Object ( [vid] => 486267 [uid] => 32 [title] => Procedura valutativa per Professore di seconda fascia 2025PA519 [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117468 [type] => bandi [language] => it [created] => 1742302616 [changed] => 1742302616 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742302616 [revision_uid] => 32 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) ) [field_bandi_chiave_web] => Array ( [und] => Array ( [0] => Array ( [value] => web_2025PA519 [format] => [safe_value] => web_2025PA519 ) ) ) [field_bandi_oggetto] => Array ( [und] => Array ( [0] => Array ( [value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA519 - Dipartimento di Biologia - DiBio – Gruppo scientifico-disciplinare 05/BIOS-03 - ZOOLOGIA E ANTROPOLOGIA – Settore scientifico-disciplinare BIOS-03/B - ANTROPOLOGIA.

[format] => 2 [safe_value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA519 - Dipartimento di Biologia - DiBio – Gruppo scientifico-disciplinare 05/BIOS-03 - ZOOLOGIA E ANTROPOLOGIA – Settore scientifico-disciplinare BIOS-03/B - ANTROPOLOGIA.

) ) ) [field_bandi_protocollo] => Array ( ) [field_bandi_scadenza] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-04-10 13:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => datetime ) ) ) [field_foglia_semplice_allegato] => Array ( ) [field_bandi_data_pubblicazione] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-21 13:00:00 [timezone] => Europe/Paris [timezone_db] => UTC [date_type] => datetime ) ) ) [field_bandi_qualifica] => Array ( [und] => Array ( [0] => Array ( [tid] => 2648 ) ) ) [field_foglia_complessa_accordion] => Array ( [und] => Array ( [0] => Array ( [nid] => 111440 [access] => 1 ) [1] => Array ( [nid] => 111441 [access] => 1 ) ) ) [field_bandi_stato] => Array ( [und] => Array ( [0] => Array ( [value] => Aperto ) ) ) [field_avviso] => Array ( ) [field_dettagli_blocco_bandi] => Array ( ) [path] => Array ( [pathauto] => 0 ) [name] => stefano.zampieri [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:48:"form-WsCySmos4vAVlyFhG6gU5T7knfAyqco8LxlocSU_yIA";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 1 [current_revision_id] => 486267 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Procedura valutativa per Professore di seconda fascia 2025PA519 [href] => node/117468 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Procedura valutativa per Professore di seconda fascia 2025PA519 ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) )

Procedura valutativa per Professore di seconda fascia 2025PA518

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => bandi [#object] => stdClass Object ( [vid] => 486265 [uid] => 32 [title] => Procedura valutativa per Professore di seconda fascia 2025PA518 [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117467 [type] => bandi [language] => it [created] => 1742302563 [changed] => 1742302563 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742302563 [revision_uid] => 32 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) ) [field_bandi_chiave_web] => Array ( [und] => Array ( [0] => Array ( [value] => web_2025PA518 [format] => [safe_value] => web_2025PA518 ) ) ) [field_bandi_oggetto] => Array ( [und] => Array ( [0] => Array ( [value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA518 - Dipartimento di Biologia - DiBio – Gruppo scientifico-disciplinare 05/BIOS-06 - FISIOLOGIA – Settore scientifico-disciplinare BIOS-06/A - FISIOLOGIA.

[format] => 2 [safe_value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA518 - Dipartimento di Biologia - DiBio – Gruppo scientifico-disciplinare 05/BIOS-06 - FISIOLOGIA – Settore scientifico-disciplinare BIOS-06/A - FISIOLOGIA.

) ) ) [field_bandi_protocollo] => Array ( ) [field_bandi_scadenza] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-04-10 13:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => datetime ) ) ) [field_foglia_semplice_allegato] => Array ( ) [field_bandi_data_pubblicazione] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-21 13:00:00 [timezone] => Europe/Paris [timezone_db] => UTC [date_type] => datetime ) ) ) [field_bandi_qualifica] => Array ( [und] => Array ( [0] => Array ( [tid] => 2648 ) ) ) [field_foglia_complessa_accordion] => Array ( [und] => Array ( [0] => Array ( [nid] => 111440 [access] => 1 ) [1] => Array ( [nid] => 111441 [access] => 1 ) ) ) [field_bandi_stato] => Array ( [und] => Array ( [0] => Array ( [value] => Aperto ) ) ) [field_avviso] => Array ( ) [field_dettagli_blocco_bandi] => Array ( ) [path] => Array ( [pathauto] => 0 ) [name] => stefano.zampieri [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:48:"form-WsCySmos4vAVlyFhG6gU5T7knfAyqco8LxlocSU_yIA";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 1 [current_revision_id] => 486265 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Procedura valutativa per Professore di seconda fascia 2025PA518 [href] => node/117467 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Procedura valutativa per Professore di seconda fascia 2025PA518 ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) )

Procedura valutativa per Professore di seconda fascia 2025PA517

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => bandi [#object] => stdClass Object ( [vid] => 486263 [uid] => 32 [title] => Procedura valutativa per Professore di seconda fascia 2025PA517 [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117465 [type] => bandi [language] => it [created] => 1742302556 [changed] => 1742302556 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742302556 [revision_uid] => 32 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) ) [field_bandi_chiave_web] => Array ( [und] => Array ( [0] => Array ( [value] => web_2025PA517 [format] => [safe_value] => web_2025PA517 ) ) ) [field_bandi_oggetto] => Array ( [und] => Array ( [0] => Array ( [value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA517 - Dipartimento di Biomedicina comparata e alimentazione - BCA – Gruppo scientifico-disciplinare 07/MVET-01 - ANATOMIA E FISIOLOGIA VETERINARIA – Settore scientifico-disciplinare MVET-01/A - ANATOMIA VETERINARIA

[format] => 2 [safe_value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA517 - Dipartimento di Biomedicina comparata e alimentazione - BCA – Gruppo scientifico-disciplinare 07/MVET-01 - ANATOMIA E FISIOLOGIA VETERINARIA – Settore scientifico-disciplinare MVET-01/A - ANATOMIA VETERINARIA

) ) ) [field_bandi_protocollo] => Array ( ) [field_bandi_scadenza] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-04-10 13:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => datetime ) ) ) [field_foglia_semplice_allegato] => Array ( ) [field_bandi_data_pubblicazione] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-21 13:00:00 [timezone] => Europe/Paris [timezone_db] => UTC [date_type] => datetime ) ) ) [field_bandi_qualifica] => Array ( [und] => Array ( [0] => Array ( [tid] => 2648 ) ) ) [field_foglia_complessa_accordion] => Array ( [und] => Array ( [0] => Array ( [nid] => 111440 [access] => 1 ) [1] => Array ( [nid] => 111441 [access] => 1 ) ) ) [field_bandi_stato] => Array ( [und] => Array ( [0] => Array ( [value] => Aperto ) ) ) [field_avviso] => Array ( ) [field_dettagli_blocco_bandi] => Array ( ) [path] => Array ( [pathauto] => 0 ) [name] => stefano.zampieri [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:48:"form-WsCySmos4vAVlyFhG6gU5T7knfAyqco8LxlocSU_yIA";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 1 [current_revision_id] => 486263 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Procedura valutativa per Professore di seconda fascia 2025PA517 [href] => node/117465 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Procedura valutativa per Professore di seconda fascia 2025PA517 ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) )

Elixir, online la prima call per accedere ai servizi dell'infrastruttura di ricerca per i dati biologici

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 486272 [uid] => 13 [title] => Elixir, online la prima call per accedere ai servizi dell'infrastruttura di ricerca per i dati biologici [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117466 [type] => box_lancio_news [language] => it [created] => 1742302469 [changed] => 1742303114 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742303114 [revision_uid] => 13 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[summary] => [format] => 2 [safe_value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138308 [uid] => 13 [filename] => hp_ricerca_provette.jpg [uri] => public://hp_ricerca_provette_5.jpg [filemime] => image/jpeg [filesize] => 27410 [status] => 1 [timestamp] => 1742302667 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 435 [width] => 653 ) [height] => 435 [width] => 653 [alt] => laboratorio [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 [format] => [safe_value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2264 ) [1] => Array ( [tid] => 2267 ) [2] => Array ( [tid] => 2462 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-04-19T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => chiara.mezzalira [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:37:"form-e496b743db3766e42eb8a4d1ccc1c014";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 4 [current_revision_id] => 486272 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[summary] => [format] => 2 [safe_value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

) ) [field_img_box_lancio_news] => Array ( [#theme] => field [#weight] => 0 [#title] => Immagine [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_img_box_lancio_news [#field_type] => image [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 486272 [uid] => 13 [title] => Elixir, online la prima call per accedere ai servizi dell'infrastruttura di ricerca per i dati biologici [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117466 [type] => box_lancio_news [language] => it [created] => 1742302469 [changed] => 1742303114 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742303114 [revision_uid] => 13 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[summary] => [format] => 2 [safe_value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138308 [uid] => 13 [filename] => hp_ricerca_provette.jpg [uri] => public://hp_ricerca_provette_5.jpg [filemime] => image/jpeg [filesize] => 27410 [status] => 1 [timestamp] => 1742302667 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 435 [width] => 653 ) [height] => 435 [width] => 653 [alt] => laboratorio [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 [format] => [safe_value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2264 ) [1] => Array ( [tid] => 2267 ) [2] => Array ( [tid] => 2462 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-04-19T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => chiara.mezzalira [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:37:"form-e496b743db3766e42eb8a4d1ccc1c014";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 4 [current_revision_id] => 486272 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [fid] => 138308 [uid] => 13 [filename] => hp_ricerca_provette.jpg [uri] => public://hp_ricerca_provette_5.jpg [filemime] => image/jpeg [filesize] => 27410 [status] => 1 [timestamp] => 1742302667 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 435 [width] => 653 ) [height] => 435 [width] => 653 [alt] => laboratorio [title] => ) ) [#formatter] => image [0] => Array ( [#theme] => image_formatter [#item] => Array ( [fid] => 138308 [uid] => 13 [filename] => hp_ricerca_provette.jpg [uri] => public://hp_ricerca_provette_5.jpg [filemime] => image/jpeg [filesize] => 27410 [status] => 1 [timestamp] => 1742302667 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 435 [width] => 653 ) [height] => 435 [width] => 653 [alt] => laboratorio [title] => ) [#image_style] => [#path] => ) ) [field_abstract_news] => Array ( [#theme] => field [#weight] => 0 [#title] => Abstract [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_abstract_news [#field_type] => text_long [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 486272 [uid] => 13 [title] => Elixir, online la prima call per accedere ai servizi dell'infrastruttura di ricerca per i dati biologici [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117466 [type] => box_lancio_news [language] => it [created] => 1742302469 [changed] => 1742303114 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742303114 [revision_uid] => 13 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[summary] => [format] => 2 [safe_value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138308 [uid] => 13 [filename] => hp_ricerca_provette.jpg [uri] => public://hp_ricerca_provette_5.jpg [filemime] => image/jpeg [filesize] => 27410 [status] => 1 [timestamp] => 1742302667 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 435 [width] => 653 ) [height] => 435 [width] => 653 [alt] => laboratorio [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 [format] => [safe_value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2264 ) [1] => Array ( [tid] => 2267 ) [2] => Array ( [tid] => 2462 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-04-19T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => chiara.mezzalira [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:37:"form-e496b743db3766e42eb8a4d1ccc1c014";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 4 [current_revision_id] => 486272 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 [format] => [safe_value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 ) ) [#formatter] => text_default [0] => Array ( [#markup] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 ) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Elixir, online la prima call per accedere ai servizi dell'infrastruttura di ricerca per i dati biologici [href] => node/117466 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Elixir, online la prima call per accedere ai servizi dell'infrastruttura di ricerca per i dati biologici ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) [field_date_box_lancio_news] => Array ( [#theme] => field [#weight] => 1 [#title] => Data [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_date_box_lancio_news [#field_type] => date [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 486272 [uid] => 13 [title] => Elixir, online la prima call per accedere ai servizi dell'infrastruttura di ricerca per i dati biologici [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117466 [type] => box_lancio_news [language] => it [created] => 1742302469 [changed] => 1742303114 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742303114 [revision_uid] => 13 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[summary] => [format] => 2 [safe_value] =>

È stata pubblicata la prima call di ELIXIRxNextGenIT per l’accesso nazionale e trans-nazionale (NOA/TNA) ai servizi del progetto ELIXIRxNextGenIT, con cui è stato stabilito un protocollo completo per coordinare e gestire i servizi per genomica e metabolomica provenienti da 3 strutture di ricerca in Italia. 

I programmi TNA/NOA sono iniziative che mirano a sostenere gli scienziati e le scienziate fornendo loro accesso gratuito a strutture, attrezzature, competenze, servizi e risorse delle infrastrutture di ricerca a cui normalmente non hanno accesso. 

L'accesso ai dati avviene da remoto, con invio del campione, è gratuito e include materiali di consumo e altri costi necessari per eseguire le analisi elencate nel catalogo dei servizi, e inoltre repository di dati/risultati per 3 mesi dalla conclusione dell'accordo di servizio.

La procedura di candidatura è riportata nella sezione dedicata delle Linee guida NOA di ELIXIRxNextGenIT. Una volta soddisfatti i requisiti, le domande devono essere inviate a elixir.it.iib@gmail.com entro e non oltre le 23:59 del 15 aprile 2025.

Bando e altre informazioni

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138308 [uid] => 13 [filename] => hp_ricerca_provette.jpg [uri] => public://hp_ricerca_provette_5.jpg [filemime] => image/jpeg [filesize] => 27410 [status] => 1 [timestamp] => 1742302667 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 435 [width] => 653 ) [height] => 435 [width] => 653 [alt] => laboratorio [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 [format] => [safe_value] => L'obiettivo è sostenere la ricerca fornendo accesso gratuito a strutture, attrezzature, competenze, servizi e risorse. Il bando scade il 15 aprile 2025 ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2264 ) [1] => Array ( [tid] => 2267 ) [2] => Array ( [tid] => 2462 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-04-19T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => chiara.mezzalira [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:37:"form-e496b743db3766e42eb8a4d1ccc1c014";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 4 [current_revision_id] => 486272 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) [#formatter] => date_default [0] => Array ( [#markup] => Mar, 18/03/2025 ) ) )

Procedura valutativa per Professore di seconda fascia 2025PA516

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => bandi [#object] => stdClass Object ( [vid] => 486262 [uid] => 32 [title] => Procedura valutativa per Professore di seconda fascia 2025PA516 [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117464 [type] => bandi [language] => it [created] => 1742302373 [changed] => 1742302373 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742302373 [revision_uid] => 32 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) ) [field_bandi_chiave_web] => Array ( [und] => Array ( [0] => Array ( [value] => web_2025PA516 [format] => [safe_value] => web_2025PA516 ) ) ) [field_bandi_oggetto] => Array ( [und] => Array ( [0] => Array ( [value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA516 - Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata - FISPPA – Gruppo scientifico-disciplinare 14/GSPS-01 - FILOSOFIA POLITICA – Settore scientifico-disciplinare GSPS-01/A - FILOSOFIA POLITICA.

[format] => 2 [safe_value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA516 - Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata - FISPPA – Gruppo scientifico-disciplinare 14/GSPS-01 - FILOSOFIA POLITICA – Settore scientifico-disciplinare GSPS-01/A - FILOSOFIA POLITICA.

) ) ) [field_bandi_protocollo] => Array ( ) [field_bandi_scadenza] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-04-10 13:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => datetime ) ) ) [field_foglia_semplice_allegato] => Array ( ) [field_bandi_data_pubblicazione] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-21 13:00:00 [timezone] => Europe/Paris [timezone_db] => UTC [date_type] => datetime ) ) ) [field_bandi_qualifica] => Array ( [und] => Array ( [0] => Array ( [tid] => 2648 ) ) ) [field_foglia_complessa_accordion] => Array ( [und] => Array ( [0] => Array ( [nid] => 111440 [access] => 1 ) [1] => Array ( [nid] => 111441 [access] => 1 ) ) ) [field_bandi_stato] => Array ( [und] => Array ( [0] => Array ( [value] => Aperto ) ) ) [field_avviso] => Array ( ) [field_dettagli_blocco_bandi] => Array ( ) [path] => Array ( [pathauto] => 0 ) [name] => stefano.zampieri [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:48:"form-WsCySmos4vAVlyFhG6gU5T7knfAyqco8LxlocSU_yIA";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 1 [current_revision_id] => 486262 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Procedura valutativa per Professore di seconda fascia 2025PA516 [href] => node/117464 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Procedura valutativa per Professore di seconda fascia 2025PA516 ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) )

Procedura valutativa per Professore di seconda fascia 2025PA515

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => bandi [#object] => stdClass Object ( [vid] => 486261 [uid] => 32 [title] => Procedura valutativa per Professore di seconda fascia 2025PA515 [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117463 [type] => bandi [language] => it [created] => 1742302316 [changed] => 1742302316 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742302316 [revision_uid] => 32 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) ) [field_bandi_chiave_web] => Array ( [und] => Array ( [0] => Array ( [value] => web_2025PA515 [format] => [safe_value] => web_2025PA515 ) ) ) [field_bandi_oggetto] => Array ( [und] => Array ( [0] => Array ( [value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA515 - Dipartimento di Scienze politiche, giuridiche e studi internazionali - SPGI – Gruppo scientifico-disciplinare 12/GIUR-09 - DIRITTO INTERNAZIONALE – Settore scientifico-disciplinare GIUR-09/A - DIRITTO INTERNAZIONALE.

[format] => 2 [safe_value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA515 - Dipartimento di Scienze politiche, giuridiche e studi internazionali - SPGI – Gruppo scientifico-disciplinare 12/GIUR-09 - DIRITTO INTERNAZIONALE – Settore scientifico-disciplinare GIUR-09/A - DIRITTO INTERNAZIONALE.

) ) ) [field_bandi_protocollo] => Array ( ) [field_bandi_scadenza] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-04-10 13:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => datetime ) ) ) [field_foglia_semplice_allegato] => Array ( ) [field_bandi_data_pubblicazione] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-21 13:00:00 [timezone] => Europe/Paris [timezone_db] => UTC [date_type] => datetime ) ) ) [field_bandi_qualifica] => Array ( [und] => Array ( [0] => Array ( [tid] => 2648 ) ) ) [field_foglia_complessa_accordion] => Array ( [und] => Array ( [0] => Array ( [nid] => 111440 [access] => 1 ) [1] => Array ( [nid] => 111441 [access] => 1 ) ) ) [field_bandi_stato] => Array ( [und] => Array ( [0] => Array ( [value] => Aperto ) ) ) [field_avviso] => Array ( ) [field_dettagli_blocco_bandi] => Array ( ) [path] => Array ( [pathauto] => 0 ) [name] => stefano.zampieri [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:48:"form-WsCySmos4vAVlyFhG6gU5T7knfAyqco8LxlocSU_yIA";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 1 [current_revision_id] => 486261 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Procedura valutativa per Professore di seconda fascia 2025PA515 [href] => node/117463 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Procedura valutativa per Professore di seconda fascia 2025PA515 ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) )

Acqua ossigenata green grazie a un nuovo idrogel

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 486278 [uid] => 26499 [title] => Acqua ossigenata green grazie a un nuovo idrogel [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117462 [type] => box_lancio_news [language] => it [created] => 1742302287 [changed] => 1742304085 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742304085 [revision_uid] => 26499 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[summary] => [format] => 2 [safe_value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138309 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_0.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742302804 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => particolare dell'idrogel [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento [format] => [safe_value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2264 ) [1] => Array ( [tid] => 2267 ) [2] => Array ( [tid] => 2462 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( [und] => Array ( [0] => Array ( [value] => https:/www.unipd.it/news/green-hydrogen-peroxide-thanks-new-hydrogel [format] => [safe_value] => https:/www.unipd.it/news/green-hydrogen-peroxide-thanks-new-hydrogel ) ) ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => rossella.vezzosi [picture] => 0 [data] => b:0; [num_revisions] => 7 [current_revision_id] => 486278 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[summary] => [format] => 2 [safe_value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico.

) ) [field_img_box_lancio_news] => Array ( [#theme] => field [#weight] => 0 [#title] => Immagine [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_img_box_lancio_news [#field_type] => image [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 486278 [uid] => 26499 [title] => Acqua ossigenata green grazie a un nuovo idrogel [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117462 [type] => box_lancio_news [language] => it [created] => 1742302287 [changed] => 1742304085 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742304085 [revision_uid] => 26499 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[summary] => [format] => 2 [safe_value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138309 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_0.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742302804 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => particolare dell'idrogel [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento [format] => [safe_value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2264 ) [1] => Array ( [tid] => 2267 ) [2] => Array ( [tid] => 2462 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( [und] => Array ( [0] => Array ( [value] => https:/www.unipd.it/news/green-hydrogen-peroxide-thanks-new-hydrogel [format] => [safe_value] => https:/www.unipd.it/news/green-hydrogen-peroxide-thanks-new-hydrogel ) ) ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => rossella.vezzosi [picture] => 0 [data] => b:0; [num_revisions] => 7 [current_revision_id] => 486278 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [fid] => 138309 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_0.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742302804 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => particolare dell'idrogel [title] => ) ) [#formatter] => image [0] => Array ( [#theme] => image_formatter [#item] => Array ( [fid] => 138309 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_0.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742302804 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => particolare dell'idrogel [title] => ) [#image_style] => [#path] => ) ) [field_abstract_news] => Array ( [#theme] => field [#weight] => 0 [#title] => Abstract [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_abstract_news [#field_type] => text_long [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 486278 [uid] => 26499 [title] => Acqua ossigenata green grazie a un nuovo idrogel [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117462 [type] => box_lancio_news [language] => it [created] => 1742302287 [changed] => 1742304085 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742304085 [revision_uid] => 26499 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[summary] => [format] => 2 [safe_value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138309 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_0.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742302804 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => particolare dell'idrogel [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento [format] => [safe_value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2264 ) [1] => Array ( [tid] => 2267 ) [2] => Array ( [tid] => 2462 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( [und] => Array ( [0] => Array ( [value] => https:/www.unipd.it/news/green-hydrogen-peroxide-thanks-new-hydrogel [format] => [safe_value] => https:/www.unipd.it/news/green-hydrogen-peroxide-thanks-new-hydrogel ) ) ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => rossella.vezzosi [picture] => 0 [data] => b:0; [num_revisions] => 7 [current_revision_id] => 486278 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento [format] => [safe_value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento ) ) [#formatter] => text_default [0] => Array ( [#markup] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento ) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Acqua ossigenata green grazie a un nuovo idrogel [href] => node/117462 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Acqua ossigenata green grazie a un nuovo idrogel ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) [field_date_box_lancio_news] => Array ( [#theme] => field [#weight] => 1 [#title] => Data [#access] => 1 [#label_display] => above [#view_mode] => teaser [#language] => und [#field_name] => field_date_box_lancio_news [#field_type] => date [#field_translatable] => 0 [#entity_type] => node [#bundle] => box_lancio_news [#object] => stdClass Object ( [vid] => 486278 [uid] => 26499 [title] => Acqua ossigenata green grazie a un nuovo idrogel [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117462 [type] => box_lancio_news [language] => it [created] => 1742302287 [changed] => 1742304085 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742304085 [revision_uid] => 26499 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[summary] => [format] => 2 [safe_value] =>

L'Università di Padova ha effettuato una ricerca, in collaborazione con la Northwestern University, che ha portato alla scoperta di un nuovo idrogel capace di rendere più efficiente la conversione della luce solare in prodotti chimici, come l'acqua ossigenata. Questa sostanza è nota per le sue proprietà ossidanti e disinfettanti ed è ampiamente utilizzata in medicina, industria e ambito domestico. Tradizionalmente, l'acqua ossigenata è prodotta mediante la riduzione dell'ossigeno, un processo che, sebbene efficiente, presenta problemi di sostenibilità poiché richiede solventi organici, idrogeno e metalli nobili. Pertanto, si stanno esplorando metodi alternativi che utilizzano l'energia elettrica o la luce solare.

La chiave per una conversione efficiente della luce solare in prodotti chimici sembra risiedere nel movimento, come avviene in natura con le piante che utilizzano gli stomi per regolare la fotosintesi o nel corpo umano con organi come il cuore e i polmoni. 

Proprio grazie al movimento, infatti, il team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern. «Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo – spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze chimiche dell’Università di Padova –. Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».  

Il team di ricercatori ha dunque sviluppato un idrogel che si gonfia e si contrae in risposta agli stimoli, migliorando la fotosintesi artificiale.
L'idrogel sviluppato è composto da due elementi principali: un fotocatalizzatore per convertire la luce solare in reazioni chimiche e un materiale termoresponsivo per adattarsi ai cambiamenti di temperatura. Gli studi hanno dimostrato che questo nuovo idrogel organico aumenta significativamente l'efficienza di produzione dell'acqua ossigenata quando viene sottoposto a rapidi cicli di contrazione ed espansione. Questo movimento meccanico accelera lo scambio di prodotti e reagenti, analogamente al funzionamento degli organi del corpo umano.

Questa ricerca innovativa, finanziata dall'Unione Europea con un ERC Starting Grant, e guidata da Luka Ðorđević dell'Università di Padova, non solo migliora la sostenibilità della produzione chimica, ma potrebbe trovare applicazioni estese in altri materiali e reazioni.

[safe_summary] => ) ) ) [field_date_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_etichetta_box_lancio_news] => Array ( ) [field_img_box_lancio_news] => Array ( [und] => Array ( [0] => Array ( [fid] => 138309 [uid] => 26499 [filename] => Idrogel.JPG [uri] => public://Idrogel_0.JPG [filemime] => image/jpeg [filesize] => 30054 [status] => 1 [timestamp] => 1742302804 [type] => image [field_file_image_alt_text] => Array ( ) [field_file_image_title_text] => Array ( ) [field_folder] => Array ( [und] => Array ( [0] => Array ( [tid] => 2048 ) ) ) [metadata] => Array ( [height] => 416 [width] => 688 ) [height] => 416 [width] => 688 [alt] => particolare dell'idrogel [title] => ) ) ) [field_link_alla_news] => Array ( ) [field_link_esterno_news] => Array ( ) [field_pagina_associata] => Array ( ) [field_link_etichetta] => Array ( ) [field_abstract_news] => Array ( [und] => Array ( [0] => Array ( [value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento [format] => [safe_value] => Una ricerca dell'Università di Padova converte la luce del sole in prodotti chimici tramite il movimento ) ) ) [field_allegato_news] => Array ( ) [field_categorie_news] => Array ( [und] => Array ( [0] => Array ( [tid] => 2264 ) [1] => Array ( [tid] => 2267 ) [2] => Array ( [tid] => 2462 ) ) ) [field_pub_date] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [value2] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) ) [field_layout_news] => Array ( [und] => Array ( [0] => Array ( [value] => single ) ) ) [field_testo_opzionale_news] => Array ( ) [field_url_en_page] => Array ( [und] => Array ( [0] => Array ( [value] => https:/www.unipd.it/news/green-hydrogen-peroxide-thanks-new-hydrogel [format] => [safe_value] => https:/www.unipd.it/news/green-hydrogen-peroxide-thanks-new-hydrogel ) ) ) [field_url_en_page_label] => Array ( [und] => Array ( [0] => Array ( [value] => English version [format] => [safe_value] => English version ) ) ) [path] => Array ( [pathauto] => 1 ) [name] => rossella.vezzosi [picture] => 0 [data] => b:0; [num_revisions] => 7 [current_revision_id] => 486278 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] => 2025-03-18T00:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => date ) ) [#formatter] => date_default [0] => Array ( [#markup] => Mar, 18/03/2025 ) ) )

Procedura valutativa per Professore di seconda fascia 2025PA514

Array ( [body] => Array ( [#theme] => field [#weight] => 0 [#title] => Body [#access] => 1 [#label_display] => hidden [#view_mode] => teaser [#language] => und [#field_name] => body [#field_type] => text_with_summary [#field_translatable] => 0 [#entity_type] => node [#bundle] => bandi [#object] => stdClass Object ( [vid] => 486259 [uid] => 32 [title] => Procedura valutativa per Professore di seconda fascia 2025PA514 [log] => [status] => 1 [comment] => 0 [promote] => 1 [sticky] => 0 [nid] => 117461 [type] => bandi [language] => it [created] => 1742302260 [changed] => 1742302260 [tnid] => 0 [translate] => 0 [revision_timestamp] => 1742302260 [revision_uid] => 32 [body] => Array ( [und] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) ) [field_bandi_chiave_web] => Array ( [und] => Array ( [0] => Array ( [value] => web_2025PA514 [format] => [safe_value] => web_2025PA514 ) ) ) [field_bandi_oggetto] => Array ( [und] => Array ( [0] => Array ( [value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA514 - Dipartimento di Fisica e Astronomia "Galileo Galilei" - DFA – Gruppo scientifico-disciplinare 02/PHYS-04 - FISICA TEORICA DELLA MATERIA, MODELLI, METODI MATEMATICI E APPLICAZIONI – Settore scientifico-disciplinare PHYS-04/A - FISICA TEORICA DELLA MATERIA, MODELLI, METODI MATEMATICI E APPLICAZIONI.

[format] => 2 [safe_value] =>

Procedura valutativa per la chiamata di un Professore di seconda fascia, ai sensi dell’art. 24, comma 5, Legge 30 dicembre 2010, n. 240, riservata a ricercatori a tempo determinato di cui all’art. 24 comma 3 lett. b) della Legge 30 dicembre 2010, n.240 nel terzo anno del contratto triennale di lavoro subordinato, a tempo determinato, stipulato con la medesima Università ed in possesso dell’Abilitazione Scientifica Nazionale ai sensi dell’art. 16 della Legge 30 dicembre 2010, n. 240 – 2025PA514 - Dipartimento di Fisica e Astronomia "Galileo Galilei" - DFA – Gruppo scientifico-disciplinare 02/PHYS-04 - FISICA TEORICA DELLA MATERIA, MODELLI, METODI MATEMATICI E APPLICAZIONI – Settore scientifico-disciplinare PHYS-04/A - FISICA TEORICA DELLA MATERIA, MODELLI, METODI MATEMATICI E APPLICAZIONI.

) ) ) [field_bandi_protocollo] => Array ( ) [field_bandi_scadenza] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-04-10 13:00:00 [timezone] => Europe/Paris [timezone_db] => Europe/Paris [date_type] => datetime ) ) ) [field_foglia_semplice_allegato] => Array ( ) [field_bandi_data_pubblicazione] => Array ( [und] => Array ( [0] => Array ( [value] => 2025-03-21 13:00:00 [timezone] => Europe/Paris [timezone_db] => UTC [date_type] => datetime ) ) ) [field_bandi_qualifica] => Array ( [und] => Array ( [0] => Array ( [tid] => 2648 ) ) ) [field_foglia_complessa_accordion] => Array ( [und] => Array ( [0] => Array ( [nid] => 111440 [access] => 1 ) [1] => Array ( [nid] => 111441 [access] => 1 ) ) ) [field_bandi_stato] => Array ( [und] => Array ( [0] => Array ( [value] => Aperto ) ) ) [field_avviso] => Array ( ) [field_dettagli_blocco_bandi] => Array ( ) [path] => Array ( [pathauto] => 0 ) [name] => stefano.zampieri [picture] => 0 [data] => a:2:{s:13:"form_build_id";s:48:"form-WsCySmos4vAVlyFhG6gU5T7knfAyqco8LxlocSU_yIA";s:14:"wysiwyg_status";a:1:{i:1;i:1;}} [num_revisions] => 1 [current_revision_id] => 486259 [is_current] => 1 [is_pending] => [revision_moderation] => [entity_view_prepared] => 1 ) [#items] => Array ( [0] => Array ( [value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[summary] => [format] => 2 [safe_value] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

[safe_summary] => ) ) [#formatter] => text_summary_or_trimmed [0] => Array ( [#markup] =>

l documento ufficiale è reperibile all’Albo on line di Ateneo

Scadenza: 10 aprile 2025, alle ore 13

Domanda telematica

) ) [links] => Array ( [#theme] => links__node [#pre_render] => Array ( [0] => drupal_pre_render_links ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) [node] => Array ( [#theme] => links__node__node [#links] => Array ( [node-readmore] => Array ( [title] => Read more about Procedura valutativa per Professore di seconda fascia 2025PA514 [href] => node/117461 [html] => 1 [attributes] => Array ( [rel] => tag [title] => Procedura valutativa per Professore di seconda fascia 2025PA514 ) ) ) [#attributes] => Array ( [class] => Array ( [0] => links [1] => inline ) ) ) ) )

Pagine