Servizio momentaneamente sospeso per manutenzione.

Rubrica

Personale Strutture

Qualifica

Professori Associati

Indirizzo

VIA CESARE BATTISTI, 241/243 - PADOVA

Telefono

0498274173

Gianfranco Adimari graduated from the University of Padua and obtained his PhD from the University of Padua in 1996.

He has been Researcher in Statistics at the University of Padua, Italy, from December 1997 until December 2004.

He is a Fellow of the the Italian Statistical Society .

Avvisi

Orari di ricevimento

  • Il Martedi' dalle 11:30 alle 13:00
  • Il Giovedi' dalle 11:30 alle 13:00

Pubblicazioni

To Duc, K., Chiogna, M., Adimari, G. (2016). Bias-corrected methods for estimating the receiver operating characteristic surface of continuous diagnostic tests. Electronic Journal of Statistics, 10, 3063-3113.

Lunardon, N., Adimari, G. (2016). Second-order Accurate Confidence Regions Based on Members of the Generalized Power Divergence Family. Scandinavian Journal of Statistics, 43, 213-227.

Adimari, G., Chiogna, M. (2015). Nearest-neighbor estimation for ROC analysis under verification bias. The International Journal of Biostatistics, 11, 109-124.

Adimari, G., Chiogna, M. (2012). Jackknife empirical likelihood based confidence intervals for partial areas under ROC curves. Statistica Sinica, 22, 1457-1477.

Adimari, G., Chiogna, M. (2010). Simple nonparametric confidence regions for the evaluation of continuous-scale diagnostic tests. The International Journal of Biostatistics, Vol. 6, Iss. 1, Article 24. DOI: 10.2202/1557-4679.1256

Pauli, F., Adimari, G. (2010). Bayesian inference with a pairwise likelihood: an approach based on empirical likelihood. Proceedings of the 45th Scientific Meeting of the Italian Statistical Society.

Adimari, G., Guolo, A. (2010). A note on the asymptotic behaviour of empirical likelihood statistics. Statistical Methods & Applications, DOI: 10.1007/s10260-010-0137-9

Adimari, G., Preo, P. (2007). Robust confidence intervals for log-location-scale models with right censored data. J. Stat. Plann. Infer., 137, 2832-2849.

Adimari, G. (2006). Nonparametric confidence intervals for the area under the ROC curve. Statistica, 65, 39-49. (in Italian)

Adimari, G., Chiogna, M. (2006). Partially parametric interval estimation of Pr {Y>X}. Comp. Stat. Data Analysis, 51, 1875-1891.

Adimari, G., Chiogna, M. (2004). A semiparametric approach to the stress-strength problem. XLII Riunione Scientifica della Societa' Italiana di Statistica, Atti, pp 721-724 (Sessioni spontanee).

Adimari, G., Preo, P. (2002). Robust confidence intervals for censored data. XLI Riunione Scientifica della Societa' Italiana di Statistica, Atti, pp 617-620 (Sessioni spontanee).
Adimari, G., Chiogna, M. (2012). Nearest-neighbor estimation for ROC analysis under verification bias. Submitted.

Adimari, G., Drago, E. (2006). Intervalli di confidenza non parametrici per i quantili con dati MAR. Working paper, Dipartimento di Scienze Statistiche, Universita' di Padova.

Adimari, G., Ventura, L. (2002). Quasi-likelihood from M-estimators: a numerical comparison with empirical likelihood. Statistical Methods & Applications, 11, 175-186.

Adimari, G., Ventura, L. (2002). Quasi-profile loglikelihoods for unbiased estimating functions. Ann. Inst. Statist. Math., 54, 235-244.

Adimari, G., Ventura, L. (2001). Robust inference for generalized linear models with application to logistic regression. Stat. & Prob. Letters, 55, 413-419.

Adimari, G . (1998). An empirical likelihood statistic for quantiles. J. Statist. Comp. Simul., 60, 85-95.

Adimari, G . (1997). Empirical likelihood type confidence intervals under random censorship. Ann. Inst. Statist. Math., 49, 447-466.

Adimari, G . (1997). On the empirical likelihood ratio for smooth functions of M-functionals. Scand. J. Statist, 24, 47-59.

Adimari, G . (1995). Empirical likelihood confidence intervals for the difference between means. Statistica, 1, 87-94. (in Italian)

Area di ricerca

Empirical Likelihood, Pseudo Likelihoods, Nonparametric Statistical Inference, Robust Statistics, Survival Analisys, ROC Analisys.