Servizio momentaneamente sospeso per manutenzione.

Rubrica

Personale Strutture

Qualifica

Professore Associato

Indirizzo

VIA F. MARZOLO, 8 - PADOVA

Telefono

0498277001

Nato nel 1969, Enrico Napolitani ha conseguito la laurea magistrale in Fisica nel 1996 (Università di Padova) e il Dottorato di Ricerca in Scienza dei Materiali nel 2000 (Università di Catania). Dal 2000 al 2014 è stato ricercatore scientifico presso il CNR-IMM Matis (Padova, Italia).

Dal 2014 è Professore Associato in Fisica della Materia presso l'Università di Padova, dove tiene corsi di Fisica Generale e di Fisica e Tecnologia dei Semiconduttori, e coordina i laboratori di Spettrometria di Massa a Ioni Secondari, Van der Pauw-Hall e Trattamenti Termici Rapidi e Laser presso il Dipartimento di Fisica e Astronomia. Attualmente è anche membro associato dell'Istituto CNR-IMM e dell'INFN-Laboratori Nazionali di Legnaro, dove svolge parte delle sue attività di ricerca.

La sua ricerca si concentra sulla fisica e la tecnologia dei semiconduttori per la nano- e optoelettronica, con particolare attenzione ai fenomeni di diffusione, attivazione elettrica ed evoluzione dei difetti legati ai processi avanzati di drogaggio di Si e Ge. Attualmente sta studiando diversi metodi di processing avanzati, quali impianto ionico, epitassia, deposizione fisica da vapore, monolayer doping, UV nanosecond laser processing, per migliorare il drogaggio e le proprietà strutturali di strati di Ge o Si, o di materiali 2D per applicazioni in nanoelettronica, optoelettronica, sensoristica o informazione quantistica.

È membro del comitato editoriale delle riviste "Material Science in Semiconductor Processing" (Elsevier) e "Materials" (MDPI), e membro del consiglio dei delegati della European Material Research Society. È stato relatore di numerose tesi di laurea magistrale e di dottorato ed è membro del collegio dei docenti della Scuola di Dottorato in Fisica dell'Università di Padova.

Ha all'attivo 250 pubblicazioni su riviste peer-reviewed (H-index 33), 3 capitoli di libri, 2 brevetti internazionali, presentazioni su invito a conferenze internazionali, organizzazione di simposi e conferenze internazionali, partecipazioni a comitati internazionali ed editoriali.

Avvisi

Orari di ricevimento

  • ricevimento previa richiesta tramite posta elettronica: enrico.napolitani@unipd.it

Pubblicazioni

[1] K. Chen, E. Napolitani, M. De Tullio, C. Jiang, H. Guthrey, F. Sgarbossa, S. Theingi, W. Nemeth, M. Page, P. Stradins, S. Agarwal, D.L. Young, Pulsed Laser Annealed Ga Hyperdoped Poly‐Si / SiO x Passivating Contacts for High‐Efficiency Monocrystalline Si Solar Cells, ENERGY Environ. Mater. (2023) 1–12. https://doi.org/10.1002/eem2.12542.
[2] E. Di Russo, A. Tonon, A. Mischianti, F. Sgarbossa, E. Coleman, F. Gity, L. Panarella, B. Sheehan, V.A. Lebedev, D. De Salvador, R. Duffy, E. Napolitani, Synthesis of Large-Area Crystalline MoS 2 by Sputter Deposition and Pulsed Laser Annealing, ACS Appl. Electron. Mater. 5 (2023) 2862–2875. https://doi.org/10.1021/acsaelm.3c00362.
[3] E. Di Russo, F. Sgarbossa, P. Ranieri, G. Maggioni, S. Ndiaye, S. Duguay, F. Vurpillot, L. Rigutti, J.-L. Rouvière, V. Morandi, D. De Salvador, E. Napolitani, Synthesis of relaxed Ge0.9Sn0.1/Ge by nanosecond pulsed laser melting, Appl. Surf. Sci. 612 (2023) 155817. https://doi.org/10.1016/j.apsusc.2022.155817.
[4] M. Zimbone, M. Cantarella, G. Sfuncia, G. Nicotra, V. Privitera, E. Napolitani, G. Impellizzeri, Low-temperature atomic layer deposition of TiO2 activated by laser annealing: Applications in photocatalysis, Appl. Surf. Sci. 596 (2022) 153641. https://doi.org/10.1016/j.apsusc.2022.153641.
[5] D. Fontana, F. Sgarbossa, R. Milazzo, E. Di Russo, E. Galluccio, D. De Salvador, R. Duffy, E. Napolitani, Ex-situ n-type heavy doping of Ge1-xSnx epilayers by surface Sb deposition and pulsed laser melting, Appl. Surf. Sci. 600 (2022) 154112. https://doi.org/10.1016/j.apsusc.2022.154112.
[6] A. Jiménez, E. Napolitani, A. Datas, I. Martín, G. López, M. Cabero, F. Sgarbossa, R. Milazzo, S.M. Carturan, D. de Salvador, I. García, Y.K. Ryu, J. Martínez, C. del Cañizo, N-type doping of SiC-passivated Ge by pulsed laser melting towards the development of interdigitated back contact thermophotovoltaic devices, Sol. Energy Mater. Sol. Cells. 235 (2022) 111463. https://doi.org/10.1016/j.solmat.2021.111463.
[7] F. Sgarbossa, A. Levarato, S.M. Carturan, G.A. Rizzi, C. Tubaro, G. Ciatto, F. Bondino, I. Píš, E. Napolitani, D. De Salvador, Phosphorus precursors reactivity versus hydrogenated Ge surface: towards a reliable self-limited monolayer doping, Appl. Surf. Sci. 541 (2021) 148532. https://doi.org/10.1016/j.apsusc.2020.148532.
[8] R. Milazzo, C. Carraro, J. Frigerio, A. Ballabio, G. Impellizzeri, D. Scarpa, A. Andrighetto, G. Isella, E. Napolitani, Ex-situ doping of epitaxially grown Ge on Si by ion-implantation and pulsed laser melting, Appl. Surf. Sci. 509 (2020) 145277. https://doi.org/10.1016/j.apsusc.2020.145277.
[9] R. Milazzo, M. Linser, G. Impellizzeri, D. Scarpa, M. Giarola, a. Sanson, G. Mariotto, A. Andrighetto, A. Carnera, E. Napolitani, p-type doping of Ge by Al ion implantation and pulsed laser melting, Appl. Surf. Sci. 509 (2020) 145230. https://doi.org/10.1016/j.apsusc.2019.145230.
[10] C. Carraro, R. Milazzo, F. Sgarbossa, D. Fontana, G. Maggioni, W. Raniero, D. Scarpa, L. Baldassarre, M. Ortolani, A. Andrighetto, D.R. Napoli, D. De Salvador, E. Napolitani, N-type heavy doping with ultralow resistivity in Ge by Sb deposition and pulsed laser melting, Appl. Surf. Sci. 509 (2020) 145229. https://doi.org/10.1016/j.apsusc.2019.145229.

Area di ricerca

His research focuses on the physics and technology of semiconductors for nano- and opto-electronics, with emphasis on diffusion, electrical activation and defect evolution phenomena related with advanced doping processes of Si and Ge.

Major achievements include the description of the diffusion and activation phenomena involved in the formation of shallow junctions in Si and Ge, and the development of defect engineering strategies and advanced processing methods for their control, including co-doping and ultra-fast and laser annealing.

Currently, he is investigating different processing methods, including ion implantation, epitaxy, physical vapor deposition, monolayer doping, nanosecond UV laser annealing, to improve the doping and structural properties of Ge/Si layers or 2D materials for nanoelectronic, optoelectronic and sensor applications.

Enrico Napolitani also has internationally recognized skills in the chemical depth profiling of solids, with applications in several fields also outside semiconductor physics.

With the aim of providing an overview of the recent progresses in semiconductor doping and stimulating research in this field, he edited in 2017 the special issue “Advanced doping methods in semiconductor devices and nanostructures” (Corresponding Editors: E. Napolitani, J. Williams, R. Duffy) in the journal Material Science in Semiconductor Processing (Elsevier).

Tesi proposte

Hyperdoping of Semiconductors by Pulsed Laser Melting

The detailed topics of the thesis will be agreed according to the particular student's interest and the actual research needs, in the field of Laser processing of semiconductors.

Laser annealing has proven a beneficial potential to improve the electrical, structural and optical properties of semiconductors for advanced devices in nanoelectronics, photonics, plasmonics, gamma-ray detections, etc.. In fact, Laser annealing allows extremely fast dynamics (nanoseconds) of surface melting and recrystallization, which allows the synthesis of shallow layers with properties not accessible with conventional equilibrium thermal processes.

For example, a possible thesis activity could be the processing of Ge or 2D materials (to hyperdope above the solubility limits or to modify the structural, electrical and optical properties) by PLM. Samples will be processed at the new laboratory for Laser Processing at the DFA and then characterized to understand, as a function of the processing conditions: the dopant diffusion and incorporation during melting/recrystallization; the electrical properties of the doped layers (carrier concentration and mobility); the evolution of the surface morphology; and the strain. The data will be analyzed with the help of a simulation code.

The student will acquire several skills including the fundamentals on different processing and characterization techniques such as pulsed UV Laser Processing, VdP-Hall, SIMS, AFM, HRXRD and notions on the physics of non-equilibrium doping processes and on the properties of hyperdoped semiconductor materials.