Address book

Contacts

Staff Structures

MICHELE ZAPPALORTO

Back to the list

Position

Professore Ordinario

Address

STRADELLA SAN NICOLA, 3 - VICENZA

Telephone

0444998747

Michele Zappalorto- Short CV

Michele Zappalorto has worked for about 15 years in the field of composite and nanocomposite materials and has a consistent spectrum of publications on these topics. His scientific and research interests are focused on the study of the structural response and the damage mechanics of composites and nanocomposites, and on the development of predictive models to describe the mechanical and physical behaviour of this class of materials. In particular, understanding and describing the fatigue and fracture behaviour of composite and nanocomposite materials and the study of stress distributions in composite laminates are of primary interest, as well as modelling of the toughening mechanisms and multifunctional response in composites and nanocomposites.

PERSONAL INFORMATION
Zappalorto Michele (orcid.org/0000-0002-4173-5244), Date of birth: 1980 November 17, Nationality: Italian
http://en.didattica.unipd.it/offerta/docente/3C7761DD61CE0D10812B2897C27E145F

EDUCATION
2009 PhD, Faculty of Engineering, Department of Mechanics, University of Padova, Italy
2005 Master, Faculty of Engineering, Department of Management and Engineering (DTG), University of Padova, Italy


CURRENT POSITION
Since December 2021 Full Professor in Machine Design (ING-IND/14) Department of Management and Engineering, University of Padova, Italy

PREVIOUS POSITIONS
2016-2021 Associate Professor in Machine Design (ING-IND/14), Department of Management and Engineering, University of Padova, Italy
2010 –2016 Assistant Professor in Machine Design (ING-IND/14), Department of Management and Engineering, University of Padova, Italy
2009 – 2010 Post Doc, Department of Management and Engineering, University of Padova, Italy

Notices

Office hours

  • at Ufficio del docente
    Su appuntamento

Publications



Zappalorto M, Berto F, Rajagopal KR (2016). On the anti-plane state of stress near pointed or sharply radiused notches in strain limiting elastic materials: closed form solution and implications for fracture assessments. International Journal of Fracture, Vol. 199, pp. 169–184.
Salviato M, Zappalorto M., (2016). A unified solution approach for a large variety of antiplane shear and torsion notch problems: Theory and examples. International Journal of Solids and Structures, Vol. 102-103, pp. 10-20.
Meneghetti G, Zappalorto M (2017). On the use of the peak stress method to assess the linear elastic and the fatigue notch factors of notched components under tension. Fatigue and Fracture of Engineering Materials and Structures, Vol. 40, pp. 1917-1927.
Carraro PA, Novello E, Quaresimin M, Zappalorto M (2017). Delamination onset in symmetric cross-ply laminates under static loads: Theory, numerics and experiments. Composite Structures, Vol. 176, pp. 420-432.
Zappalorto M, Panozzo F, Carraro PA, Quaresimin M (2017). Electrical response of a laminate with a delamination: modelling and experiments. Composites Science and Technology, Vol. 143, 31-45
Zappalorto M, Carraro PA (2017). Two-dimensional stress distributions in tensioned orthotropic plates weakened by blunt V-shaped notches. Fatigue and Fracture of Engineering Materials and Structures, Vol. 40, pp. 804-819.
Bartolozzi A, Bertani R, Burigo E, Fabrizi A, Panozzo F, Quaresimin M, Simionato F, Sgarbossa P, Tamburini S, Zappalorto M, Zorzi F (2017). Multifunctional Cu2+-montmorillonite/epoxy resin nanocomposites with antibacterial activity. Journal of Applied Polymer Science, Vol. 134, 44733.
Panozzo F, Zappalorto M, Quaresimin M (2017). Analytical model for the prediction of the piezoresistive behavior of CNT modified polymers. Composites Part B: Engineering, Vol. 109, pp. 53-63.
Zappalorto M (2017). On the stress state in rectilinear anisotropic thick plates with blunt cracks. Fatigue and Fracture of Engineering Materials and Structures, Vol. 40, pp. 103-119.
Rajagopal KR, Zappalorto M (2018). Bodies described by non-monotonic strain-stress constitutive equations containing a crack subject to anti-plane shear stress. International Journal of Mechanical Sciences, Vol. 149, pp. 494-499.
Zappalorto M, Carraro PA (2018). Neuber fictitious notch rounding approach reformulated for orthotropic materials. Engineering Fracture Mechanics, Vol. 191, pp. 441-445.
Zappalorto M, Maragoni L (2018). Nonlinear mode III crack stress fields for materials obeying a modified Ramberg-Osgood law. Fatigue and Fracture of Engineering Materials and Structures, Vol 41, pp. 708-714.
Panozzo F, Zappalorto M, Carraro PA, Quaresimin M (2018). Electrical resistance change vs damage state in cracked symmetric laminates: A closed form solution. Composite Structures, Vol. 184, pp. 1081-1091.
Panozzo F, Zappalorto M, Maragoni L, Nothdurfter SK, Rullo A, Quaresimin M (2018). Modelling the electrical resistance change in a multidirectional laminate with a delamination. Composites Science and Technology, Vol. 162, pp. 225-234
Salviato M, Zappalorto M, Maragoni L (2018). Exact solution for the mode III stress fields ahead of cracks initiated at sharp notch tips. European Journal of Mechanics A-Solids, Vol. 72, pp. 88-96
Zappalorto M, Salviato M, Maragoni L (2019). Analytical study on the mode III stress fields due to blunt notches with cracks. Fatigue and Fracture of Engineering Materials and Structures, Vol. 42, 612-626.

Thesis proposals

Students interested in carrying out the Master thesis in the field of Mechanics of Materials and advanced mechanical design are kindly asked to email or phone Prof. Michele Zappalorto to schedule an interview for discussing the thesis projects available.