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Course unit English 
denomination      

General enrichment strategies for finite element methods to solve 
Poisson problem with Dirichlet boundary conditions 

SS MATH-05/A 

Teacher in charge  
(if defined) 

Nudo Federico 

Teaching Hours 16 

Number of ECTS credits 
allocated 

3 

Course period  November 2025 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents The course will cover the following topics: 
• Introduction to finite element methods. 
• Limitations of standard triangular and simplicial linear finite elements. 
• Overview of enrichment strategies for finite element methods 
• Conforming and nonconforming enrichment approach. 
• Enrichment strategies for specific finite elements and error bounds in L1 

and L∞ norm. 
• Implementation of enriched finite element methods to solve the Poisson 

problem with Dirichlet boundary conditions. 

Learning goals By the end of the course, students are expected to: 
• Understand the fundamental principles of FEM and EFEM. 
• Learn to apply FEM and EFEM to solve practical engineering problems. 
• Develop the skills necessary to implement enrichment strategies in 
numerical simulations. 

Teaching methods  Frontal lectures 

Course on transversal, 
interdisciplinary, 
transdisciplinary skills 

☐ Yes 

☒ No 

Available for PhD 
students from other 
courses 

☒ Yes 

☐ No 

Prerequisites  
(not mandatory) 

This course is designed for students who possess a basic understanding of 
numerical analysis and it focuses specifically on enrichment strategies for the 
Poisson problem with Dirichlet boundary conditions, although these strategies 
are applicable to a broader class of elliptic boundary value problems. 
Familiarity with linear algebra is essential, and basic MATLAB programming 
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skills are recommended for the practical implementation of the discussed 
methods. 

Examination methods  
(in applicable) 

Solving exercises and giving a seminar on a course-related topic 

Suggested readings 1. P. G. Ciarlet. The finite element method for elliptic problems, SIAM, 
2002. 

2. A. Guessab. Sharp Approximations based on Delaunay Triangulations 
and Voronoi Diagrams, NSU Publishing and Printing Center., 2022. 

3. A. J. M. Ferreira. MATLAB Codes for Finite Element Analysis, 
Springer, 2009. 

4. F. Dell’Accio, F. Di Tommaso, A. Guessab, F. Nudo. A general class of 
enriched methods for the simplicial linear finite elements, Applied 
Mathematics and Computation, 456:128149, 2023. 

5. M. Eskandari-Ghadi, D. Mehdizadeh, A. Morshedifard, M. Rahimian. A 
family of exponentially gradient elements for numerical computation of 
singular boundary value problems, Engineering Analysis with 
Boundary Elements, 80: 184–198, 2017. 

Additional information  
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Course unit English 

denomination      

Functional convex ordering of stochastic processes: a constructive 
approach with applications to Finance 

SS MATH-03/B, STAT-04/A 

Teacher in charge  

(if defined) 

Gilles Pagès 

Teaching Hours 16 

Number of ECTS 

credits allocated 

3 

Course period  March-April 2026 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents • Convex ordering: definitions and first (static) examples 
- Convex ordering(s) for Rd-valued random vectors 
- Characterization of convex orders 

- First examples: convex ordering of Gaussian vectors, European vanilla 
options with convex payoff in a Black-Scholes model, Value-at-Risk and 
Expected shortfall. 

- Toward functional order: the case of Asian option. 
• Functional convex ordering(s): definition and characterization 

-  Propagation of convexity 
- The case of martingale (and scaled) Brownian diffusions 
- Application to path-dependent European options convex payoffs in local 

volatility models 
- Extension to jump diffusions (SDEs driven by L´evy processes) 

• From European to American path-dependent options for Brownian and 
jump diffusions 

• Convex ordering for McKean-Vlasov SDEs 
• Application to the comparison of mean-field games (optional) 
• Convex ordering in a non-Markovian framework: the case of stochastic 

Volterra equations. 
• Application to variance swaps in a Quadratic rough Heston stochastic 

volatility model. 

Learning goals – Familiarize the audience with the different notions of convex order 
between random variables and their links with the usual risk measures in 
finance. 

– Extend these notions to a functional framework in order to apply it to 
Markovian or non-Markovian stochastic processes. 

– Analyze the connections between convex order and propagation of 
convexity by a semigroup associated with various Markov processes. 
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– Different families of processes will be studied: ARCH processes 
(discrete time), Brownian or jump diffusion processes, solutions of 
McKean-Vlasov equations, stochastic Volterra processes. 

– Applications to the sensitivity of path-dependent options to “functional 
volatility” will be detailed. 

- Most of the results will be obtained by passing to the limit from the 
simulable numerical approximation schemes, of the Euler scheme type, 
which makes it possible to define effective approximation protocols 
respecting convex ordering and convexity propagation for the calculation 
of prices of complex optional products having a path-dependent payoff. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 
Probability Theory, Stochastic processes, stochastic calculus 

Examination methods  

(if applicable) 
It can be a standard exam with or without documents or more likely the 
reading of research papers combined with numerical experiments 

Suggested readings P. Carr, C.-O. Ewald and Y.Xiao, On the qualitative effect of volatility and 
duration on prices of Asian options, Finance Research Letters, 
5(3):162–171, 2008. 

B. Jourdain, G. Pagès, Convex ordering for stochastic Volterra equations 
and their Euler schemes, Fin. & Stoch., 29(1):1-62, 2025. 

B. Jourdain, G. Pagès, Convex ordering of solutions to one-dimensional 
SDEs, arXiv:2312.09779, 2023. 

N. El Karoui, M. Jeanblanc & S.E. Shreve, Robustness of the Black and 
Scholes formula. Math. Financ. 8(2):9–126, 1998. 

B. Hajek, Mean stochastic comparison of diffusions. Z.Wahrsch. Verw. 
Gebiete, 68(3):315– 329, 1985. 

F. Hirsch, B. Roynette, C. Profeta & M. Yor, Peacocks and Associated 
Martingales, with Explicit Constructions, Springer, 2011. 

P.-L. Lions, M. Musiela, Convexity of solutions of parabolic equations, C. R. 
Acad. Sci. Paris, S´er. I 342 (2006) 915–921. 

G. Pagès, Convex order for path-dependent derivatives: a dynamic 
programing approach, Séminaire de Probabilités, XLVIII, LNM 2168, 
Springer, Berlin, 33-96, 2016. 

Y. Liu, G.Pagès, Functional convex order for the scaled McKean–Vlasov 
processes, Ann. Appl. Probab. 33(6A):4491–4527, 2023. DOI: 
10.1214/22-AAP1924 

Y. Liu, G.Pagès, Monotone convex order for the McKean–Vlasov 
processes, Stoch. Proc. & their Appli., 152:312-338, 2022, ISSN 
0304-4149, https://doi.org/10.1016/j.spa.2022.06.003. 

Additional information  
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Course unit English 

denomination      

Reflection groups 

SS MATH-02/A 

Teacher in charge  

(if defined) 

Giulio Peruginelli, Andriy Regeta 

Teaching Hours 24 

Number of ECTS 

credits allocated 

4 

Course period  November 2025 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents • Reflections in a Euclidean space and complex reflections. Reflection 
groups. Examples. 

• Coxeter groups and Coxeter graphs. The classification of finite reflection 
groups. Platonic solids. 

• Crystallographic groups (Weyl groups). 

• How do we parametrize orbits? Basics on commutative algebra and 
invariant theory. Orbit spaces and fundamental regions. 

• Invariant polynomials. The case of the symmetric group. 

• Chevalley-Shephard-Todd theorem with examples. 

• Degrees of a finite reflection group. 

(if time permits) 

• Basics on affine algebraic varieties. 

• Platonic solids, finite subgroups of SL2(C) and Kleininan singularities. 

Learning goals The aim of the course is to stress the special nature of groups generated 
by reflections and the role of symmetry in different situations in 
mathematics. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 



 

SCIENZE MATEMATICHE 

 

Prerequisites  

(not mandatory) 

Basic notions on groups, rings and vector spaces that are usually covered 
in a bachelor degree in mathematics. If needed, definitions and basic 
theorems would be recalled along the course. 

Examination methods  

(if applicable) 
Solving exercises and/or giving a seminar on a paper related to the 
content of the course. 

Suggested readings [B ] N. Bourbaki, Elements of Mathematics, Chapter IV, Coxeter Groups 
and Tits systems and Chapter V, Groups Generated by Reflections, 
Springer, English translation by Andrew Pressley, from the 1968 
original version. 

[H ] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge 
University Press, 1992. 

[R ] A. Regeta, Lectures on Reflection Groups and Invariant Theory, lecture 
notes, available at https://andriyregeta.wixsite.com/homepage 

[S ] P. Slodowy, Platonic solids, Kleinian singularities, and Lie groups, in: 
Proceedings of the Third Midwest Algebraic Geometry Conference 
held at the University of Michigan, Ann Arbor, USA, November 14-15, 
1981 Ed; I Dolgachev. 

[D ] I. Dolgachev, Reflection groups in algebraic geometry, Bull. A.M.S. 45 
(2008), 1–60. 

Additional information Symmetry is a crucial concept in mathematics and the first natural 
examples of symmetries one may think of are reflections. Groups 
generated by reflections (reflection groups) include well-known families, 
such as the symmetric groups and the dihedral groups. Reflection groups 
have very special properties, that can be seen for instance in their group 
structure, and in the nature of their orbit spaces. Classical corner stones in 
the theory are the classification of finite reflection groups in a Euclidean 
space by means of Coxeter graphs -including the classification of Platonic 
solids- and the Chevalley-Shephard-Todd’s theorem. The latter 
characterizes finite groups generated by complex reflections acting on a 
linear space as those for which the ring of invariant polynomial functions is 
a ring of polynomials (i.e., the orbit space is again linear). After getting a 
grip on these basic facts, the course is intended to move on to the role 
that reflection groups play in singularity theory. 
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Course unit English 

denomination      

Linear Parabolic Equations in Hilbert Spaces: 
analysis and numerical approximation 

SS MATH-05/A 

Teacher in charge  

(if defined) 

Federico Piazzon 

Teaching Hours 16 

Number of ECTS 

credits allocated 

3 

Course period  May 2026 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents The course consists of two closely related and complementary parts: the first 
10 hours will be devoted to the construction of the solutions of certain 
classes of linear parabolic equations formulated as evolution equations in 
Hilbert spaces. The second part of the course (6 hours) concerns the 
numerical approximation of such solutions. First we consider the semi-
discrete approximation by the Faedo-Galerkin approach, then we exploit the 
properties of analytic semigroups to define a fully-discrete sequence of 
approximations by means of the Laplace transform and its numerical 
inversion. 
Due to the time constraint, only the most important (and/or instructive) 
results will be proven, while many others will be only presented and 
discussed. Some classical equations (e.g., heat eq., convection-diffusion 
eq., Sobolev eq., and visco-elastic eq.) will be used as examples both to 
apply the presented theoretical results and verify their hypothesis, and to test 
the introduced approximation techniques. 

Part 1 (10h - 5 lectures) 
1) Quadratic forms and linear operators on Hilbert spaces; 
2) Accretive operators, generation of contraction and analytic semigroups, 

relation with Laplace transform; 
3) Solving first-order (in time) linear non-degenerte explicit parabolic 

equations; 
4) More general linear parabolic equations than ut = Lu + f: implicit and 

second-order equations; 
5) Classical examples: heat, convection-diffusion, visco-elastic, and Sobolev 

equations. 
Part 2 (6h - 3 lectures) 

1) Galerkin method for elliptic problems, standard error estimates; 
2) Semi-discretization by Faedo-Galerkin method, error analysis and 

convergence; 
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3) Fully discrete approximation by Laplace transform and quadrature, 
convergence analysis for sectorial operators. 

Learning goals The course will offer, in the framework of linear parabolic PDEs, the 
opportunity of running into the whole scientific process of analyzing a 
mathematical problem, constructing its solution, and developing a robust 
numerical approximation method by exploiting the same properties of the 
problem that surfaced in the analysis step. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 
Real and functional analysis, basics of numerical analysis. All the essential 
notions will be briefly recalled during the lectures. 

Examination methods  

(if applicable) 

Either oral examination on the content of the course, or presentation of a 
related research paper. Whenener the background of the student includes 
some programming skills, the presentation of numerical experiments might 
be included in the exam. 

Suggested readings [1] R. E. Showalter. Hilbert space methods for partial differential equations. 
Monographs and Studies in Mathematics, Vol. 1. Pitman, London-San 
Francisco, Calif.-Melbourne, 1977. 

[2] Alexandre Ern and Jean-Luc Guermond. Finite elements III first-order and 
time-dependent PDEs, volume 74 of Texts in Applied Mathematics. 
Springer, Cham, [2021] c2021. 

[3] Vidar Thom´ee. Galerkin finite element methods for parabolic problems, 
volume 25 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, second edition, 2006. 

[4] E. Brian Davies. Linear operators and their spectra, volume 106 of 
Cambridge Studies in Advanced Mathematics. Cambridge University 
Press, Cambridge, 2007. 

Additional information  

 

  



 

SCIENZE MATEMATICHE 

 
 

Course unit English 

denomination      

Principal Bundles 

SS MATH-02/B 

Teacher in charge  

(if defined) 

Oren Ben-Bassat 

Teaching Hours 16 

Number of ECTS 

credits allocated 

3 

Course period  October 2025 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English  

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents • Short introduction to Grothendieck topologies and sheaves. E´ tale 
cohomology, C˘ ech cohomology. Examples. 

• Principal bundles and torsors in topology, arithmetic geometry, complex 
analytic geometry, differential geometry, and algebraic geometry. 

• Groupoids, moduli spaces of vector bundles, vector bundles on the 
projective line and other algebraic curves. 

• Stable bundles, Higgs bundles, Hitchin systems and their quantization. 

• Topological Quantum Field Theories and Frobenius algebras. 

• Defining Topological Quantum Field Theories with G-bundles. 
 

    Optional topics: 
- Related topics in representation theory and group cohomology 

Learning goals The course provides an introduction to the theory of principal bundles and 
shows some applications in different fields of mathematics, ranging from 
arithmetic to mathematical physics. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 
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Prerequisites  

(not mandatory) 

It will be helpful to come with some familiarity with topics like commutative 
algebra, homological algebra, vector bundles, differential geometry, 
algebraic geometry, different types of cohomology.  
We will try to fill in the necessary category theory as we go along. 

Examination methods  

(if applicable) 
Oral presentation of an argument related to the topics presented during 
the lectures. 

Suggested readings - “Hitchin systems and their quantization”, Pavel Etingof, Henry Liu, 
https://arxiv.org/abs/2409.09505 

- “Frobenius algebras and 2D topological quantum field theories” (short 
version), Joachim Kock https://mat.uab.cat/ kock/TQFT/FS.pdf 

- “Vector Bundles and K-theory”, by Allen Hatcher 
https://pi.math.cornell.edu/ hatcher/VBKT/VB.pdf 

Additional information  
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Course unit English 

denomination      

Random Graphs and Networks 

SS MATH-03/B 

Teacher in charge  

(if defined) 

Gianbattista Giacomin 

Teaching Hours 24 

Number of ECTS 

credits allocated 

4 

Course period  November 2025 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents Complex networks have captured the attention of the scientific community 
in recent years due to their prevalence in a wide variety of real-world 
scenarios, such as social networks, biological systems, and technological 
infrastructures. These networks exhibit largescale behaviors that reveal 
common properties, notably the “small-world” effect and the “scalefree” 
phenomenon. Random graphs serve as mathematical models that 
facilitate the analysis of these large-scale features. Roughly, random 
graphs can be described as random variables taking values on a set of 
graphs, hence well suited to capture both probabilistic and combinatorial 
aspects of the real-world networks. 
The course will focus on different classes of random graphs. We will start 
from the definition of the Erdos-Rényi random graph, one of simplest 
model one could think of. Despite its simplicity, this model presents 
relevant and unforeseen large-scale features that will be discussed along 
the course, including an interesting phase transition related to presence of 
a giant connected component. Keeping in mind the properties of real 
networks, we will then introduce and discuss three different families of 
random graphs: The Inhomogeneous Random Graph, the Configuration 
Model and the Preferential Attachment Model. Each model captures 
different features of real-world networks, such as heavy-tailed degree 
distributions and small world behavior, while maintaining mathematical 
tractability. The course will conclude discussing more applied topics such 
as generative models for community detection in networks. In particular, 
the Stochastic Block Model (SBM) and its connection with belief 
propagation and the reconstruction problem on trees will be presented as 
time permits. 

Lectures (tentative schedule) 
1. Basic setting: graphs, trees, random graph setting, and main properties 

of the real-world networks. 
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2. Erdös-Rényi (ER) random graphs: Uniform and Binomial model; 
monotonicity and thresholds. 

3. ER random graphs structure: trees containment, Poisson paradigm, 
largest component, connectivity. 

4. Exploration process of a graph and a random walk perspective. Tool: 
Branching Processes. 

5. Emergence of a giant component in ER- random graphs. 
6. Inhomogeneous random graphs (IRG): degree sequence and scale-

free property. 
7. Configuration Model (CM): construction and simplicity probability. 

Uniform random graphs. 
8. Phase transition and small world phenomenon in the IRG and in the 

CM. Tool: Multi-type branching process. 
9. Preferential Attachment Model (PAM): construction, scale free and 

small world properties. 
10. Perspectives I: Community structure and community detection. 
11. Perspectives II: Stochastic Block Model (SBM) and reconstruction on 

trees. 
12.  Problem for solution: the spectrum of random graphs. 

Learning goals Random graph theory sits at the intersection of probability, combinatorics, 
and graph theory, offering elegant and rigorous methods to study complex 
networks. These methods provide insights into both real-world 
phenomena and abstract mathematical structures. 
The aim of this mini-course is to equip PhD students with a rigorous 
understanding of both the theoretical and applied aspects of random 
graphs as models for complex networks. Upon completion, students are 
expected: 
• to achieve a solid understanding of fundamental concepts in random 
graph theory, including classical random graph models and properties 
relevant to real-world networks; 
• to be able to implement the main techniques involved in the study of 
random graphs, including probabilistic methods, combinatorial tools, and 
analytical methods; 
• to gain insights into advanced topics, such as problems in community 
detection or characterizing the spectrum of random graphs, and to 
develop the skills necessary to understand scientific papers on these 
subjects. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 

Basic knowledge of probability theory: discrete random variables, finite 
and countable probability spaces, convergence theorems (law of large 
number, central limit theorem). 

Examination methods  

(if applicable) 
Seminar on a paper 
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Suggested readings 1. R. van der Hofstad. Random graphs and complex networks. Vol. 1. 
Cambridge Series in Statistical and Probabilistic Mathematics, [43]. 
Cambridge University Press, Cambridge, 2017. (available on the 
author webpage) 

2. R. van der Hofstad. Random graphs and complex networks. Vol. 2. 
Cambridge Series in Statistical and Probabilistic Mathematics, [54]. 
Cambridge University Press, Cambridge, 2024. (available on the 
author webpage) 

3. A. Frieze, M. Karoński. Introduction to random graphs. Cambridge 
University Press, Cambridge, 2016. (available on the author webpage) 

4. R. van der Hofstad. Stochastic processes on random graphs. Lecture 
notes for the 47th  Summer School in Probability Saint-Flour, 2017. 
(available on the author webpage) 

5.  E. Abbe. Community Detection and Stochastic Block Models: Recent 
Developments. Journal of Machine Learning Research, 18(177), 86 pp, 
2017. 

Additional information  
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Course unit English 

denomination      

Topics in the Calculus of Variations 

SS MATH-03/A 

Teacher in charge  

(if defined) 

Caravenna Laura 

Teaching Hours 24 

Number of ECTS 

credits allocated 

4 

Course period  November 2025  

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents The calculus of variations is a cornerstone of mathematical analysis 
and optimization, focusing on finding functions that minimize or 
maximize certain quantities, typically expressed as integrals. This 
theory underpins much of modern physics and engineering, providing 
the mathematical framework for principles like the least action in 
mechanics and the optimal shapes and configurations in structural 
design. It has broad applications, from determining geodesics and 
surfaces of minimal area to optimizing control systems and studying the 
behaviour of complex systems described by partial differential 
equations. In addition to its classical uses, calculus of variations has 
fueled advances in fields like materials science, image processing, and 
machine learning, where problems often require identifying optimal 
configurations or shapes. 
Optimal transport theory is a relatively new branch of the calculus of 
variations. The original question involves finding the most efficient ways 
to move distributions of mass or probability from one configuration to 
another, while minimizing a given cost function. Initially formulated by 
Gaspard Monge in 1781 and later generalized by Leonid Kantorovich in 
1940-42, it has become a powerful tool both for pure mathematics and 
for applied problems of redistributeon and matching in economics, 
physics, data science, and beyond.  
The first part of the course covers foundational aspects. As a warm-up, 
I will introduce one-dimensional variational problems and optimality 
conditions like Euler-Lagrange equations through classical examples, 
such as the geodesic problem. I will then discuss Monge’s formulation 
of Optimal Transport Problems and its limitations, leading to 
Kantorovich’s relaxation of the problem: here the existence of 
minimizers directly follows from the direct method of the calculus of 
variations. I will introduce Kantorovich-Rubinstein duality, and 
necessary and sufficient conditions for optimality. There will be a 
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particular focus on c-cyclical monotonicity, relating it to classical 
concepts in convex analysis that it generalizes. I will then discuss the 
problem of existence of optimal maps with a special focus on Brenier’s 
theorem for the quadratic cost function. After this introductory part, I will 
select applications of optimal transport, also depending on the interest 
of the audience. Possible choices include: connection with the Monge-
Amp`ere equation, Wasserstein distances and their properties, curves 
in Wasserstein spaces and their relation to the continuity equation, 
geodesics, Benamou-Brenier formula, characterization of AC curves 
inWasserstein spaces, introduction to gradient flows in metric spaces 
and to the JKO minimization scheme for some evolution equations, 
price equilibria in economic models. 

Learning goals With the first part of the course students will learn the foundational 
aspects in the Calculus of Variations. The second part will allow them to 
master more specialized tools from the branch of optimal transport in 
their applications, also to some evolution PDEs. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes 

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes 

☐ No 

Prerequisites  

(not mandatory) 

Real analysis, some notions of basic PDEs and some functional 
analysis are welcome, for instance, chapters 1, 3, 4, 8, and 9 of Brezis’ 
book on functional analysis. The main required tools will be recalled 
during the course. 

Examination methods  

(if applicable) 
Oral exam, based either on a problem set or on a research paper 

Suggested readings Notes from lectures will be available. Relevant books for consultation 
are 

• A. Figalli, F. Glaudo: An Invitation to Optimal Transport, Wasserstein 
Distances & Gradient Flows, 2022 

• L. Ambrosio, E. Bru´e and D. Semola: Lectures on Optimal 
Transport, Springer, 2022 

• F. Santambrogio: Euclidean, Metric, and Wasserstein Gradient 
Flows: an overview, Bulletin of Mathematical Sciences, available 
online, 2017 

• F. Santambrogio: Optimal Transport for Applied Mathematicians, 
Birkhauser, 2015 

• L. Ambrosio, N. Gigli: A User’s Guide to Optimal Transport, 2012 
• L. Ambrosio, N. Gigli, G. Savar´e: Gradient Flows in Metric Spaces 

and in the Space of Probability Measures, Birkhauser, 2005 
C. Villani: Topics in Optimal Transportation, American 

Mathematical Society, 2003 

Additional information  
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Course unit English 

denomination      

The Drinfeld double of a finite group 

SS MATH-02/A – MATH-02/B 

Teacher in charge  

(if defined) 

Carnovale Giovanna 

Teaching Hours 16 

Number of ECTS 

credits allocated 

3 

Course period  January 2026 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents • Basic notions on representations and characters; 

• Hopf algebras and tensor products of representations. 
Quasitriangular Hopf algebras and the quantum Yang-Baxter 
equation; 

• The different realizations of the Drinfeld double D(G) of a group G; 

• Different realizations of the representations of D(G); 

• The braid group; knot and link invariants from representations of 
D(G); 

• Mapping class groups: the case of the torus, and representations of 
SL2(Z) obtained from D(G); 

• Fourier transforms for G and D(G); Verlinde formula for the 
decomposition of the tensor product of representations of D(G) 

• Cibils and Rosso’s classification of path algebras with a Hopf 

algebra algebra structure. 

Learning goals The goal of the course is to offer a glimpse of the Drinfeld double of a 
finite group and some of its applications in representation theory and 
topology. It should serve as a tool to see how changing point of view 
on the same mathematical object can lead to unexpected results. 
Expected knowledge, abilities and competences We expect that 
through the rich example of D(G), the participants will acquire 
familiarity with standard ideas from Hopf algebra theory, such as 
representations, tensor products, braidings, their potential applications 
in topology. 

Teaching methods  Frontal lectures 
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Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 

The course will review some of the key features of the Drinfeld double of a 
finite group, its representations, and their applications in topology, 
developing the theory from scratch and relying for a big part on the basic 
treatment in [2]. Prerequisites are: basic notions of linear algebra 
(including the tensor product of vector spaces) and algebra covered in a 
standard bachelor in mathematics. No prior knowledge of Hopf algebras 
or representation theory are required. Hopf algebraic tecnichalities will be 
kept to a minimum. 

Examination methods  

(if applicable) 
Solutions of some exercises during the course, followed by an oral 
discussion 

Suggested readings [1] N. Andruksiewitsch, H.J. Schneider, On the classification of finite-
dimensional pointed Hopf algebras, Ann. Math. 171(1), (2010), 375–417. 

[2] M. Broué, From Rings and Modules to Hopf Algebras. One Flew Over 
the Algebraist’s Nest, Springer Nature Switzerland, (2024). 

[3] G. Carnovale, N. Ciccoli, E. Collacciani, The versatility of the Drinfeld 
double of a finite group, survey, Arxiv:2410.11978. 

[4] C. Cibils, M. Rosso, Algèbres des chemins quantiques, Adv. Math. 125, 
171–199 (1997). 

[5] R. Dijkgraaf, C. Vafa, E. Verlinde, H. Verlinde, The operator algebra of 
orbifold models, Comm. Math. Phys. 123(3), 485–526, (1989). 

[6] V.G. Drinfel’d, Quantum groups, in: Proceedings of the I.C.M., Berkeley, 
(1986), American Math. Soc., 1987, 798?820. 

[7] T.H. Koornwinder, B. J. Schroers, J. K. Slingerland, F. Bais, Fourier 
transform and the Verlinde formula for the quantum double of a finite 
group, Journal of Physics A Mathematical and General 32(48),8539–
8549, (1999). 

[8] G. Lusztig, Characters of Reductive Groups over a Finite Field, 
Princeton University Press (1984). 

[9] G. Mason, The quantum double of a finite group and its role in conformal 
field theory. In: Groups ’93 Galway/St. Andrews, 2, 405–417. London 
Math. Soc. Lecture Note Ser., 212, Cambridge University Press, 
Cambridge, (1995). 

Additional information Introduction: In his 1986 Fields Medal paper [6], Drinfeld introduced the 
notion of a ring with special features nowadays called the Drinfeld double, 
one of the main goals being the production of solutions of the quantum 
Yang-Baxter equation from statistical mechanics. The construction is 
inspired by a similar construction on Poisson-Lie groups and requires an 
initial datum given by a general Hopf algebra. The case in which the 
starting datum is a finite group G is already extremely rich: the double 
D(G) occurs in the work of Dijkgraaf, E. Verlinde, H. Verlinde and Vafa [5] 
in conformal field theory, in Lusztig’s work on representations of finite 
groups of Lie type [8], in the study of mapping class groups of surfaces 
and knot and link invariants, in Verlinde’s method to count morphisms 
from fundamental groups of surfaces to a given group G, [9], in 
Andruskiewitsch and Schneider’s program for the classification of Hopf 
algebras [1], in Cibils and Rosso’s classification of path algebras with a 
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Hopf algebra structure, [4]. It is usually studied through its 
representations, that is, through the different ways in which we can see 
the elements of D(G) as endomorphisms of a given vector space. 
Representations for D(G) can be interpreted in different ways: for example 
their geometric interpretation in terms of vector bundles lead to the non-
abelian Fourier transform in [8]. Verlinde provided a striking formula of its 
fusion rules (decomposition of tensor products of representations) in terms 
of group theoretical data making use of conformal field theory only [9]: an 
algebraic proof of this formula can be given in terms of Fourier transforms 
on G x G, [7]. Several further applications and interpretations of the 
representations of D(G) are listed in the survey [3]. 
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Course unit English 

denomination      

Stochastic optimal control 

SS MATH-03/B 

Teacher in charge  

(if defined) 

Alekos Cecchin, Markus Fischer 

Teaching Hours 16 

Number of ECTS 

credits allocated 

3 

Course period  February 2026 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents Introduction to the classical theory of stochastic control problems with some 
motivating example from economics and finance. These problems consist in 
minimizing a cost in which the state variable is given by a controlled 
stochastic differential equation driven by a Brownian motion. The course will 
cover the following topics: 

• Dynamic programming principle: value function, Hamilton-Jacobi-
Bellman equation, verification theorem, solutions of second order fully 
nonlinear PDEs; 

• Backward stochastic differential equations: representation of the value 
function for the weak formulation, equivalence of strong and weak 
formulation, necessary conditions for optimality given by the 
stochastic Pontryagin’s maximum principle, relation with dynamic 
programming equation; 

• Linear-Quadratic-Gaussian optimal control problems. 
Applications to economic and financial models.. 

Learning goals Introduce the classical tools to analyze stochastic optimal control problems, 
such as dynamic programming, Pontryagin maximum principle, Backward 
SDEs, and then use these methods to study some applications. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 
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Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 

Basic knowledge of stochastic calculus (Brownian motion, stochastic 
differential equations, filtrations, martingales, ...), as presented, for 
example, in the course on stochastic analysis of the mater degree. Some 
concepts will be recalled during the course. 

Examination methods  

(if applicable) 
Oral presentation of a research paper related to the topics covered in the 
course, based on student’s interest. 

Suggested readings   

Additional information  
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Course unit English 
denomination      

Geometric aspects of PDEs 

SS MATH-03/A 

Teacher in charge  
(if defined) 

Fogagnolo Mattia, Franceschi Valentina 

Teaching Hours 16 

Number of ECTS 
credits allocated 

3 

Course period  April 2026  

Course delivery 
method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 
instruction 

English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents In this course we deal with some fundamental properties of basic elliptic 
PDEs, and build on them to discuss powerful results in the geometric 
analysis and regularity theory of submanifolds. The techniques and the 
presentation are suited to be applied in more general geometries and to 
more general equations. After recalling some basics on the geometry of 
submanifolds and the regularity theory for elliptic pdes, the topics treated 
will include: 

• Sharp gradient bounds for solutions to Laplace equations, leading in turn 
to the characterization of spheres as the only closed surfaces with 
constant mean curvature (Alexandrov theorem). This result and its proof 
will then be compared with Serrin’s overdetermined problem. 

• Regularity of solutions to elliptic PDEs, minimal graphs and regularity of 
sets with bounded mean curvature. Monotonicity formula for minimal 
surfaces and Allard’s Theorem. 

• Almgren’s frequency function and estimates of the critical set of 
harmonic functions, in connection with the monotonicity formula for 
stationary submanifolds. 

Learning goals The course aims at providing the attendees some deep connections 
among fundamental properties of elliptic PDEs and prototypical 
problems in geometric analysis. 

Teaching methods  Frontal lectures 

Course on transversal, 
interdisciplinary, 
transdisciplinary skills 

☐ Yes 

☒ No 

Available for PhD 
students from other 
courses 

☒ Yes 

☐ No 

Prerequisites  
(not mandatory) 

Basics in PDEs, calculus of variations, geometry of submanifolds. 
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Examination methods  
(in applicable) 

Seminar about a research paper in the topic. 

Suggested readings W. K. ALLARD On the first vatiation of a varifold, Ann. of Math., 1972. 
E. BOMBIERI, E. DE GIORGI, M. MIRANDA Una maggiorazione a priori 

relativa alle ipersuperfici minimali non parametriche, ARMA. 1969. 
X. FERNANDEZ-REAL, X. ROS-OTON Regularity Theory for Elliptic 

PDEs, EMS Press, 2022. 
D. GILBARG, N. TRUDINGER Elliptic Partial Differential Equations of 

Second Order, Springer, 1997. 
A. NABER, D. VALTORTA Volume Estimates on the Critical Sets of 

Solutions to Elliptic PDEs, CPAM. 2017. 
R. C. REILLY Mean curvature, the Laplacian, and soap bubbles, 

American Mathematical Monthly, 1982. 
Y. TONEGAWA Brakke’s Mean Curvature Flow An Introduction Springer, 

2019. 
X.-J. WANG Interior gradient estimates for mean curvature equations, 

Math. Z., 1998. 
B. WHITE A local regularity theorem for mean curvature flow, Ann. of 

Math., 2005. 

Additional information  
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Course unit English 

denomination      

Lie Groups and Symmetry 

SS MATH-04/A 

Teacher in charge  

(if defined) 

Luis C. García-Naranjo 

Teaching Hours 24 

Number of ECTS 

credits allocated 

4 

Course period  November 2025 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents Lie groups and their differential and group structures (left and right 
trivializations, Lie algebra of a Lie group, homomorphisms, exponential 
map, (co)adjoint action), structure of compact Lie groups (maximal tori, 
Weyl chambers); classical matrix groups and their properties; relationship 
between Lie groups and Lie algebras, Lie’s Theorems and the Baker-
Campbell-Hausdorff formula; differentiable actions of Lie groups on 
manifolds, quotient spaces (for proper actions), Palais slice theorem, 
invariant vector fields; reduction of invariant vector fields; applications to 
ODEs with symmetry (relative equilbria and relative periodic orbits, 
connection with Floquet theory, reduction and reconstruction, 
integrability). 

Learning goals The course aims at providing an introduction to the theory of Lie groups 
and their actions, which is a topic of broad interest in several areas of 
Mathematics and applications. After covering the fundamentals of the 
subject, the course will provide some examples of use of Lie groups in the 
study of ODEs with symmetry. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 
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Prerequisites  

(not mandatory) 
Basic knowledge of differential geometry. The course is addressed to all 
students. 

Examination methods  

(if applicable) 
Oral examination on the topics covered during the course. 

Suggested readings 1. J.J. Duistermaat, J.A.C. Kolk, Lie Groups. (Springer, 2000). 
2. Baker, Matrix groups. An introduction to Lie group theory. (Springer, 

2002) 
3. J. Lee, Introduction to Smooth manifolds. 2nd edition. (Springer, 2013) 
4. R. Cushman, J.J. Duistermaat and J. ´Snyaticki, Geometry of 

Nonholonomically Constrained Systems. (World Scientific, 2010). 

Additional information  
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Course unit English 

denomination      

Graphs, algebras and representations 

SS MATH-02/A 

Teacher in charge  

(if defined) 

Daniel Labardini-Fragoso, Jorge Vitória 

Teaching Hours 16 

Number of ECTS 

credits allocated 

3 

Course period  November 2025 

Course delivery 

method 

☒ In presence 

☐ Remotely 

☐ Blended 

Language of 

instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents • Quivers, path algebras, quotients of path algebras and their 
representations. 

• Modules vs. Representations. 

• Basic properties of algebras coming from graphs and their 
representations. 

• Some classes of algebras: finite-dimensional algebras; Leavitt path 
algebras; Jacobian algebras of quivers with potentials; incidence 
algebras of posets. 

• Elements of the representation theory of one of the preceding classes: 
– projective, injective and simple representations; 
– combinatorial and homological properties; 
– categorical equivalences; 
– classification results. 

Learning goals At the end of the course, students will be able to: 

• Identify basic structural properties of algebras coming from graphs and 
their representations; 
• Understand some links between the combinatorics of a quiver and the 
representation theory of the corresponding path algebra (and its quotients); 
• Learn standard (combinatorial, homological, categorical or geometric) 
techniques in the representation theory of some classes of algebras; 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 
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Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 

Students following this course should have followed courses in linear 
algebra and undergraduate abstract algebra (namely an introduction to 
rings). A basic knowledge of categories and functors is useful but not 
required. 

Examination methods  

(if applicable) 
The exam will consist on a seminar covering a part of a research paper 
related to the course. 

Suggested readings • Abrams, G., Ara, P. and Molina, M.S., Leavitt Path Algebras, Lecture Notes 
in Mathematics 2191, Springer (2017). 

• Assem, I., Skowronski, A. and Simson, D., Elements of the Representation 
Theory of Associative Algebras: Techniques of Representation Theory, 
Cambridge University Press (2006). 

• Derksen, H., Weyman, J. and Zelevinsky, A., Quivers with potentials and 
their representations I: Mutations, Selecta Math. 14 (2008), no. 1, 59–119. 

• Rota, G., On the foundations of combinatorial theory. I. Theory of M¨obius 
functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete (1964), 340–
368. 

Additional information  
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Course unit English 

denomination      

Intersection Theory 

SS MATH-02/B 

Teacher in charge  

(if defined) 

Jakob Scholbach 

Teaching Hours 16 

Number of ECTS credits 

allocated 

3 

Course period  February 2026 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents • Chow groups, including higher Chow groups 
• K-theory 
• Characteristic classes 
• The theorem of Grothendieck-Riemann-Roch 

• Introduction to motivic sheaves, six functor formalisms 

Learning goals The aim of the course is to introduce the students to intersection theory 
and to give a first idea of the theory of motivic sheaves. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 
Algebraic geometry  

Examination methods  

(if applicable) 
There will be an oral exam at the end of the course. 

Suggested readings 1. Eisenbud and Harris: “3264 and all that—a second course in algebraic 
geometry.” 

2. Fulton: “Intersection theory” 
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3. Cisinski and Déglise: “Triangulated categories of motives” 

Additional information  
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Course unit English 

denomination      

Generic Structures in PDEs, Control, and Games 

SS MATH-03/A 

Teacher in charge  

(if defined) 

Khai T. Nguyen 

Teaching Hours 16 

Number of ECTS credits 

allocated 

3 

Course period  May 2026 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents •  Controlled scalar balance laws: Transversality theorem, generic 
regularity properties and quantitative estimate on total number of 
shocks 

•  The Bolza problem: Existence of optimal solutions, Pontryagin’s 
Maximum Principle, and a priori estimates  

• Lipschitz continuity of generalized monotone operators and the ε-
entropy of solution sets 

•  Necessary conditions for conjugate points and generic uniqueness for 
optimal solutions 

•  Sharp quantitative estimate for critical sets and zeroes of multivariable 
polynomials 

•  Generic properties of first order mean field games 

Learning goals This course is to explore foundational and advanced topics in nonlinear 
partial differential equations, optimal control, and mean field games. We will 
focus on generic regularity, transversality, shock formation, and quantitative 
properties of solution sets in both analytical and applied contexts. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 
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Prerequisites  

(not mandatory) 
Analysis, linear algebra and measure theory 

Examination methods  

(if applicable) 
Oral presentation of a research paper 

Suggested readings • A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of 
Control, AIMS Series in Applied Mathematics, Springfield Mo. 2007. 

• A. Bressan and K. T. Nguyen, Generic properties of mean field 
games, Dynamic Games Appl. 13 (2023), 750–782. 

• A. Bressan, M. Mazzola, and K.T. Nguyen, Generic uniqueness and 
conjugate points for optimal control problems, Arxiv: 
https://arxiv.org/abs/2501.10572 

• A. Bressan and K.T. Nguyen, Generic solutions to controlled balance 
laws Arxiv:https://arxiv.org/abs/2410.20032 

• A. Murdza and K. T. Nguyen, A quantitative version of the 
transversality theorem, Communications in Mathematical Sciences 
21 (2023), no. 5 1302-1320 

• A. Murdza and K. T. Nguyen, A sharp quantitative estimate of critical 
sets Arxiv: https://arxiv.org/abs/2405.17107 

• M. Golubitsky and V. Guillemin, Stable Mappings and their 
Singularities. SpringerVerlag, New York, 1973. 

Additional information  
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Course unit English 

denomination      

Advanced Monte Carlo methods with applications to filtering theory 

SS MATH-03/B, STAT-04/A 

Teacher in charge  

(if defined) 

Pierre Del Moral 

Teaching Hours 16 

Number of ECTS credits 

allocated 

3 

Course period  May 2026 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents • PART 1 [4h] - Introduction: the optimal filtering problem; linear and 
non-linear filtering problems; the Bayesian framework; Kalman filter 
and extensions; numerical methods for filtering. 

• PART 2 [6h] - Linear Monte Carlo methods: Markov chain Monte Carlo 
methods; numerics for signal processing: Kalman filters, backward 
smoothing, hidden Markov chains. 

• PART 3 [6h] - Particle filtering and sequential Monte Carlo methods: 
introduction, computational efficiency, implementation challenges and 
recent applications. 
 

Learning goals This course will cover topics in the general area of Monte Carlo methods 
and their application domains, with a special emphasis on numerical 
methods for stochastic filtering and signal processing. The topics include 
Markov chain Monte Carlo (MCMC) and Sequential Monte Carlo methods 
(SMC), as well as branching and interacting particle methodologies. The 
lectures cover discrete and continuous time stochastic models, starting from 
traditional sampling techniques (perfect simulation, Metropolis-Hasting, and 
Gibbs-Glauber models) to more refined methodologies such as gradient 
flows diffusions on constraint state space and Riemannian manifolds, 
ending with the more recent and rapidly developing Branching and mean 
field type Interacting Particle Systems techniques. The final part of the 
lectures will focus on particle methods for filtering and covers 
forward/backward particle filters, extended and Ensemble Kalman filers and 
unscented Kalman filters. 
The course offers a pedagogical introduction to the theoretical foundations 
of these advanced stochastic models, combined with a series of concrete 
illustrations taken from different application domains. The applications 
considered in these lectures will range from Bayesian statistical learning 
(hidden Markov chain, statistical machine learning), risk analysis and rare 
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event sampling (mathematical finance, and industrial risk assessment), 
operation research (global optimization, combinatorial counting and 
ranking), avanced signal processing (stochastic nonlinear filtering and 
control, and data association and multiple objects tracking), computational 
and statistical physics (Feynman-Kac formulae on path spaces, molecular 
dynamics, Schrödinger’s ground states, Boltzmann-Gibbs distributions, and 
free energy computation). Approximately the first half of the course will be 
concerned with linear type Markov chain Monte Carlo methods, and the 
second part to nonlinear particle type methodologies, including interacting 
diffusions, interacting jump processes and genealogical tree based 
samplers. 
A list of topics intended to be covered is attached. 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 
Probability and stochastic calculus 

Examination methods  

(if applicable) 
Seminar on a relevant pape 

Suggested readings Self-contained and detailed lecture notes for the course will be provided. 
Other textbooks which can be useful for supplemental reading are: 
 
References: 
• Stochastic Processes: From Applications to Theory. P. Del Moral, & S. 

Penev Chapman and Hall/CRC (2017). 
• Mean field simulation for Monte Carlo integration. P. Del Moral. 

Chapman & Hall/CRC Monographs on Statistics & Applied Probability 
(2013). 

• Feynman-Kac formulae. Genealogical and interacting particle 
approximations. P. Del Moral. Springer New York. Series: Probability 
and Applications (2004). 

• Fundamentals of Stochastic Filtering. A. Bain and D. Crisan. Springer, 
Stochastic Modelling and Applied Probability, Vol. 60 (2009). 

• • Inference in Hidden Markov Models. O. Capp´e, E. Moulines, and T. 
Ryden. Springer series in Statistics (2005). 

Additional information  
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Course unit English 

denomination      

An introduction to free boundary problems 

SS MATH-03/A 

Teacher in charge  

(if defined) 

Guido De Philippis 

Teaching Hours 16 

Number of ECTS credits 

allocated 

3 

Course period  January 2026 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents The course will introduce the basic existence and regualirty theory for 
solutions to the obstacle and Bernoulli problem. If time allows  the 

structure of singularities will also be investigated. 

Learning goals Goal of the course will be to present basic techniques in the study of free 
boundary problems, this will be done by studying “prototypical” problems 
like the Obstacle Problem and the Bernoulli Problem. 

 

Teaching methods  Frontal lectures 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☐ Yes  

☒ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 

Some exposition to basic PDE (mostly basic properties of harmonic 
functions) and to Sobolev spaces (Sobolev/Poincarè inequalities, trace 
theorems,…) is advised. 

Examination methods  

(if applicable) 
Examination will be based on students presentation 

Suggested readings • L. A. Caffarelli}, The obstacle problem. Rome: Accademia Nazionale 
dei Lincei; Pisa: Scuola Normale Superiore (1998; Zbl 1084.49001) 
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• L. A. Caffarelli}, J. Fourier Anal. Appl. 4, No. 4--5, 383--402 (1998; Zbl 
0928.49030) 

• B. Velichkov}, Regularity of the one-phase free boundaries. Cham: 
Springer; Bologna: Unione Matematica Italiana (UMI) (2023; Zbl 
1558.35007) 

Additional information  
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Course unit English 

denomination      

Bayesian Machine Learning 

SS INF/04 

Teacher in charge  

(if defined) 

Giorgio Maria Di Nunzio 

Teaching Hours 20 

Number of ECTS credits 

allocated 

4 

Note: credits recognised for PhD Students in Mathematical Sciences: 3 

Course period  February – March 2026 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☒ No 

Course unit contents The course on Bayesian Machine Learning aims to introduce students to 
Bayesian reasoning and its application to common machine learning problems 
such as classification and regression. It covers key concepts including the 
mathematical framework of supervised and unsupervised learning, Bayesian 
decision theory with a focus on classification techniques like minimum-error-
rate and decision surfaces, and estimation methods such as Maximum 
Likelihood Estimation, Expectation Maximization, Maximum A Posteriori, and 
Bayesian approaches. Additionally, the course explores graphical models, 
including Bayesian networks and two-dimensional visualization, and concludes 
with methods for evaluating model accuracy. A graphical tool will be developed 
to analyze the assumptions underlying Bayesian methods in these contexts. 

Learning goals The learning goals of the course on Bayesian Machine Learning are: 
understand the fundamentals of Bayesian reasoning and how they apply to 
classical machine learning problems such as classification and regression; 
analyze the assumptions of Bayesian approaches in machine learning by 
developing and utilizing a graphical analysis tool; gain familiarity with graphical 
models, including the construction and interpretation of Bayesian networks and 
two-dimensional visualizations; critically assess the pros and cons of Bayesian 
methods compared to other approaches in machine learning; evaluate the 
performance of machine learning models** using various accuracy measures. 

 

Teaching methods  The course on Bayesian Machine Learning will use a combination of 
flipped-classroom methods, slides, and Python Jupyter notebooks to 
support both theoretical understanding and practical skills. Slides will 
introduce key topics, with in-class time dedicated to collaborative problem-
solving, and hands-on learning using Jupyter notebooks with live 
demonstrations and visualizations of Bayesian concepts. 
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Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☒ Yes  

☐ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 
None 

Examination methods  

(if applicable) 

Participation and interaction in course activities. Presentation of a case study 
(scientific article) or collaborative work on a research topic relevant to the 
course. 

Suggested readings [1] J. Kruschke, Doing Bayesian Data Analysis: A Tutorial Introduction 
With R and Bugs, Academic Press 2010  

[2] Christopher M. Bishop, Pattern Recognition and Machine Learning 
(Information Science and Statistics), Springer 2007  

[3] Richard O. Duda, Peter E. Hart, David G. Stork, Pattern 
Classification (2nd Edition), Wiley-Interscience, 2000  

[4] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin, 
Learning from Data, AMLBook, 2012 (supporting material available at 
http://amlbook.com/support.html)  

[5] David J. C. MacKay, Information Theory, Inference and Learning 
Algorithms, Cambridge University Press, 2003 (freely available and 
supporting material at http://www.inference.phy.cam.ac.uk/mackay/  

[6] David Barber, Bayesian Reasoning and Machine Learning, 
Cambridge University Press, 2012 (freely available at 
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=  

[7] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, 
MIT Press, 2012 (supporting material http://www.cs.ubc.ca/ 
murphyk/MLbook/)  

[8] Richard McElreath, Statistical Rethinking, CRC Presso, 2015 
(supporting material https://xcelab.net/rm/statistical-rethinking/) 

 

Additional information Courses in collaboration with the Doctoral School in “Information Engineering” 

https://www.unipd.it/en/phd/information-engineering  

 

  

http://amlbook.com/support.html
http://www.inference.phy.cam.ac.uk/mackay/
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=
https://xcelab.net/rm/statistical-rethinking/
https://www.unipd.it/en/phd/information-engineering
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Course unit English 

denomination      

Introduction to Modern Cryptography 

SS INGINF05 - MAT/05 

Teacher in charge  

(if defined) 

Alessandro Languasco 

Teaching Hours 24 

Number of ECTS credits 

allocated 

5  

Note: credits recognised for PhD Students in Mathematical Sciences: 3 

Course period  First semester 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction 
English 

Mandatory attendance ☒ Yes (75% minimum of presence) 

☐ No 

Course unit contents First definition of a cryptosystem. Some historical examples. Fundamental 
crypto algorithms. Shannon’s perfect cipher. A review about symmetric 
methods (historical ones, DES, AES). Asymmetric methods based on 
primality/factoring and discret log problems. Known attacks to some of the 
most used public key cryptosystems. How to use a public key system to build a 
digital signature algorithm. Digital Signatures with RSA and discrete log. 
Authentication protocols (Kerberos, Needham-Schroeder) and public key 
systems. Key exchange in three steps (Diffie-Hellman key exchange protocol), 
secret splitting, secret sharing, secret broadcasting, timestamping. 

Learning goals We present some of the main features about what a Modern Cryptosystem is. 
In particular we will focus on showing the internal characteristics of some of the 
now used public key cryptosystems. We will overview the methods based on 
the primality/factorization and on the discrete logarithm problems. The focus 
will be on the actual implementation and its feasibility in terms of both time and 
space, while taking care of the needed mathematical concepts (congruences, 
finite fields) and explaining them along the course as needed. 
As a final topic, we will show how to use a public key system in an authentica-
tion/identification protocol. The goal of the course will be to evaluate pros and 
cons of the cryptographic choices performed in designing such protocols. 

Teaching methods  In class; us 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☒ Yes  

☐ No 
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Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 
None 

Examination methods  

(if applicable) 

A seminar on a related topic. For example (but on others of common interest 
we can agree upon): The Secure Hash Algorithm (SHA); other hash 
algorithms; primality algorithms; factoring algorithms; discrete log algorithms; 
homomorphic cryptography; elliptic curves cryptography; compression and 
hash functions; probabilistic cryptography; digital currencies, electronic voting. 

Suggested readings Books:  

1. Languasco-Zaccagnini, “Manuale di Crittografia”, Hoepli, 2015.  

2. Knospe, “A course in Cryptography”, AMS, 2019.  

3. Schneier, “Applied Cryptography, Protocols, Algorithms, and Source 
Code in C”, Wiley, 1993. 

Additional information Courses in collaboration with the Doctoral School in “Information Engineering” 

https://www.unipd.it/en/phd/information-engineering 

 

  

https://www.unipd.it/en/phd/information-engineering
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Course unit English 

denomination      

Generative Artificial Intelligence: foundations and recent trends 

SS INF/03 

Teacher in charge  

(if defined) 

Simone Milani 

Teaching Hours 20 

Number of ECTS credits 

allocated 

4 

Note: credits recognised for PhD Students in Mathematical Sciences: 3 

Course period  November-December 2026 

Course delivery method ☐ In presence 

☐ Remotely 

☒ Blended 

Language of instruction 
English 

Mandatory attendance ☒ Yes (70% minimum of presence) 

☐ No 

Course unit contents Introduction to Generative AI and strategies 

• Fundamentals, basics, fields of applications, open issues and problems.  

• Example of generative AI applications.  

Bringing randomness into neural networks: the Variational Autoencoder.  

• Basic principles: regularizing an AE, statistical characterization, operation 
implementation.  

Becoming adversarial: from adversarial neural networks to generative 
adversarial networks (GANs). 

• Network training as a non-cooperative game.  

• Convergence to equilibrium. Stability points.  

• Vanishing gradients, convergence problems, mode collapse.  

• Evaluating and optimizing GANs  

• Other kinds of GANs.  

Detecting a GAN 

• GAN-revealing footprints: physical, noise, motion-related, signal-related, 
statistical. Improving quality by composite loss function.  

Overfitting a network.  

• Building a neural implicit representation (NIR).  

• Creating an overfitted networks: convergence issues, initialization, 
quantization and compression of network weights.  

• Entropy layers versus classical quantization+coding.  
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Going iterative: diffusion models. 

• Basic definition of diffusion process: forward diffusion and reverse 
diffusion.   

• Diffusion process as Markov chains.  

• Forward diffusion via stochastic differential equations. Generative reverse 
stochastic diffusion.  

• Sampling issues.  

Tips and tricks for diffusion models.  

• Accelerated Sampling, Conditional Generation, and Beyond.  

• A simple implementation of a diffusion model.  

• Accelerated diffusion models. Variational diffusion models. Critical 
sampling. Progressive distillation. Conditional diffusion models. Latent 
diffusion models.  

Application of diffusion models. 

• Image Synthesis, Text-to-Image, Controllable Generation, Image Editing, 
Image-to-Image, Super-resolution, Segmentation, Video Synthesis, 
Medical Imaging, 3D Generation.  

Combining transformers into diffusion models: diffusion transformers.  

• Basics principles of transformers.  

• Attention layers. Positional encoding. Application of transformers to DM.  

• The GLIDE architecture.  

• Application to LLMs. 

Learning goals The course will introduce fundamental strategies in Generative AI overviewing 
different architectures from GANs to the most recent diffusion models. 
Students will have the opportunity to understand the building blocks of these 
solutions and verify their performances, as well as their advantages and 
disadvantages. In the end, we will discuss a possible application of these 
solutions in their field of research. 

Teaching methods  Frontal lectures, moodle quizzes, demos and video tutorials 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☒ Yes  

☐ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 
Previous basic knowledge on Probability, Machine Learning and Deep 
Learning 

Examination methods  

(if applicable) 
Oral presentation 

Suggested readings [1] Ian Goodfellow and Yoshua Bengio and Aaron Courville, "Deep learning", 
MIT Press 2016, https://www.deeplearningbook.org/  
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[2] Jonathan Ho and Ajay Jain and Pieter Abbeel, Denoising Diffusion 
Probabilistic Models, 2020, https://arxiv.org/pdf/2006.11239.pdf  

[3] Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification 
(2nd Edition), Wiley-Interscience, 2000  

[4] Nichol, Alex & Dhariwal, Prafulla. (2021). Improved Denoising Diffusion 
Probabilistic Models. https://arxiv.org/pdf/2102.09672.pdf  

[5] David J. C. MacKay, Information Theory, Inference and Learning 
Algorithms, Cambridge University Press, 2003 (freely available and 
supporting material at http://www.inference.phy.cam.ac.uk/mackay/  

[6] Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks, 
2016, https://arxiv.org/pdf/1701.00160.pdf  

[7] Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative 
Shape Modeling. arXiv:1812.02822 [cs] (September 2019).  

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion 
Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin, Attention is all you 
need, Proc of Advances in Neural Information Processing Systems (NIPS 
2017), https://arxiv.org/pdf/1706.03762.pd 

Additional information Courses in collaboration with the Doctoral School in “Information Engineering” 

https://www.unipd.it/en/phd/information-engineering 

 

  

https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/2102.09672.pdf
http://www.inference.phy.cam.ac.uk/mackay/
https://arxiv.org/pdf/1701.00160.pdf
https://www.unipd.it/en/phd/information-engineering
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Course unit English 

denomination      

Applied functional analysis and machine learning 

SS INF/04 

Teacher in charge  

(if defined) 

Gianluigi Pillonetto 

Teaching Hours 24 

Number of ECTS credits 

allocated 

5 

Note: credits recognised for PhD Students in Mathematical Sciences: 3 

Course period  November-December 2026 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction 
English 

Mandatory attendance ☒ Yes (80% minimum of presence) 

☐ No 

Course unit contents Review of some notions on metric spaces and Lebesgue integration: Metric 
spaces. Open sets, closed sets, neighborhoods. Convergence, Cauchy 
sequences, completeness. Completion of metric spaces. Review of the 
Lebesgue integration theory. Lebesgue spaces. Banach and Hilbert spaces: 
Finite dimensional normed spaces and subspaces. Compactness and finite 
dimension. Bounded linear operators. Linear functionals. The finite 
dimensional case. Normed spaces of operators and the dual space. Weak 
topologies. Inner product spaces and Hilbert spaces. Orthogonal complements 
and direct sums. Orthonormal sets and sequences. Representation of 
functionals on Hilbert spaces. Reproducing kernel Hilbert spaces, inverse 
problems and regularization theory: Representer theorem. Reproducing Kernel 
Hilbert Spaces (RKHS): definition and basic properties. Examples of RKHS. 
Function estimation problems in RKHS. Tikhonov regularization. Support 
vector regression and classification. Extensions of the theory to deep kernel-
based networks: multi-valued RKHSs and the concatenated representer 
theorem. 

Learning goals The course is intended to give a survey of the basic aspects of functional 
analysis, machine learning, regularization theory and inverse problems. At the 
end of the course, the student will have the methodological tools to tackle 
various machine learning problems in both regression and classification 
(estimation of functions from scattered and noisy data) starting from very 
general hypothesis spaces. 

Teaching methods  Blackboard lectures and various questions posed to students regarding 
previous lessons 
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Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☒ Yes  

☐ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 

The classical theory of functions of real variable: limits and continuity, 
differentiation and Riemann integration, infinite series and uniform 
convergence. Some elementary set theory and linear algebra. 

Examination methods  

(if applicable) 
Two written exams, one in the middle of the course and the other at the end 

Suggested readings [1] G. Pillonetto, T. Chen, A. Chiuso, G. De Nicolao, L. Ljung. Regularized 
System Identification –learning dynamic models from data, Springer Nature 
2022  

[2] W. Rudin. Real and Complex Analysis, McGraw Hill, 2006  

[3] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine 
Learning. The MIT Press, 2006  

[4] H. Brezis, Functional analysis, Sobolev spaces and partial differential 
equations, Springer 2010  

[5] G. Pillonetto, A. Aravkin, D. Gedon, L. Ljung, A.H. Ribeiro and T.B. Schön, 
Deep networks for system identification: a Survey, eprint 2301.12832 arXiv, 
2023 

Additional information Courses in collaboration with the Doctoral School in “Information Engineering” 

https://www.unipd.it/en/phd/information-engineering 

 

  

https://www.unipd.it/en/phd/information-engineering
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Course unit English 

denomination      

Distributed Machine Learning and Optimization: from ADMM to 

Federated and Multiagent Reinforcement Learning (Seminar Series) 

SS Information Engineering 

Teacher in charge  

(if defined) 

Subhrakanti Dey 

Teaching Hours 20 

Number of ECTS credits 

allocated 

4 

Note: credits recognised for PhD Students in Mathematical Sciences: 3 

Course period  TBD 

Course delivery method ☒ In presence 

☐ Remotely 

☐ Blended 

Language of instruction 
English 

Mandatory attendance ☐ Yes (% minimum of presence) 

☐ No 

Course unit contents 
• Lectures 1-3: Precursors to distributed optimization algorithms: 

parallelization and decomposition of optimization algorithms (dual de- 
composition, proximal minimization algorithms, augmented Lagrangian 
and method of multipliers), The Alternating Direction Method of 
Multipliers (ADMM): (Algorithm, convergence, optimality conditions, 
applications to machine learning problems) 

• Lectures 5-7: Applications of distributed optimization to distributed 
machine learning, Federated Learning, fully distributed, consensus 
based methods under communication constraints 

• Lectures 8-10: Introduction to reinforcement learning, safe 
(constrained) reinforcement learning and its applications to data-driven 
multiagent control, Federated and multiagent reinforcement learning 

 

Learning goals The aim of this course is to introduce postgraduate students to the topical 
area of Distributed Machine Learning and Optimization. As we enter the era 
of Big Data, engineers and computer scientists face the unenviable task of 
dealing with massive amounts of data to analyse and run their algorithms on. 
Often such data reside in many different computing nodes which 
communicate over a network, and the availability and processing of the entire 
data set at one central place is simply infeasible. One needs to thus 
implement distributed optimization techniques with communicationefficient 
message passing amongst the computing nodes. The objective remains to 
achieve a solution that can be as close as possible to the solution to the 
centralized optimization problem. In this course, we will start with distributed 
optimization algorithms such as the Alternating Direction Method of 
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Multipliers (ADMM), and discuss its applications to both convex and non-
convex problems. We will then explore distributed statistical machine learning 
methods, such as Federated Learning as well as consensus based fully 
distributed algorithms. The final topic will be based on multi-agent 
reinforcement learning and its applications to safe (constrained) data-driven 
(model free) control in a multi-agent setting. This course will provide a 
glimpse into this fascinating subject, and will be of relevance to graduate 
students in Electrical, Mechanical and Computer Engineering, Computer 
Science students, as well as graduate students in Applied Mathematics and 
Statistics, along with students dealing with large data sets and machine 
learning applications to Bioinformatics 

Teaching methods  TBD 

Course on transversal, 

interdisciplinary, 

transdisciplinary skills 

☒ Yes  

☐ No 

Available for PhD 

students from other 

courses 

☒ Yes  

☐ No 

Prerequisites  

(not mandatory) 
A project assignment for students in groups of 2 requiring about 20 hours of 
work 

Examination methods  

(if applicable) 
Advanced calculus, and probability theory and random processes. 

Suggested readings [1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed 
Optimization and Statistical Learning via the Alternating Direction Method of 
Multipliers, Foundations and Trends in Machine Learning, 3(1):1122, 2011.  

[2] Dimitri Bertsekas and John N. Tsitsiklis, Parallel and Distributed 
Computation: Numerical Methods, Athena Scientific, 1997.  

[3] S. Boyd and L. Vandenverghe, Convex Optimization, Cambridge University 
Press.  

[4] R. Sutton and A. G. Barto, Reinforcement Learning, 2nd Edition, Bradford 
Books.  

[5] D. Bertsekas, Rollout, Policy Iteration and Distributed Reinforcement 
Learning, Athena Scientific, 2020. 

Relevant recent research papers will be referred to and distributed during the 
lectures 

Additional information Courses in collaboration with the Doctoral School in “Information Engineering” 

https://phd.dei.unipd.it/wp-content/uploads/2025/11/PhDCourseCatalogue2025-

26_v1.1.pdf  

 

 

https://phd.dei.unipd.it/wp-content/uploads/2025/11/PhDCourseCatalogue2025-26_v1.1.pdf
https://phd.dei.unipd.it/wp-content/uploads/2025/11/PhDCourseCatalogue2025-26_v1.1.pdf

