MASTER DEGREES OF THE SCHOOL OF ENGINEERING WITH COURSES HELD IN ENGLISH

- Civil Engineering
- Aerospace Engineering
- Chemical and Process Engineering
- Electrical Engineering
- Energy Engineering
- Materials Engineering
- Mechanical Engineering
- Automation Engineering
- Computer Engineering
- Electronic Engineering
- Telecommunications Engineering
- Engineering and Management (Vicenza campus)
- Product Innovation Engineering (Vicenza campus)

MASTER DEGREE OF THE SCHOOL OF ENGINEERING ENTIRELY HELD IN ENGLISH

- Environmental Engineering

Master degree = Second-cycle degree

FOR COURSES BASED ON A SEMESTER ORGANIZATION

First semester: October 1st, 2013 to January 25th, 2014
Second semester: March 3rd, 2014 to June 14th, 2014

FOR COURSES BASED ON A TRIMESTER ORGANIZATION

First trimester: October 1st, 2013 to December 7th, 2013
Third trimester: April 7th, 2014 to June 21th, 2014
<table>
<thead>
<tr>
<th>Department of Civil, Environmental and Architectural Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEISMIC DESIGN OF BUILDING STRUCTURES</td>
</tr>
<tr>
<td>NEARSHORE HYDRODYNAMICS AND COASTAL PROTECTION</td>
</tr>
<tr>
<td>NON LINEAR SOLID AND STRUCTURAL MECHANICS</td>
</tr>
<tr>
<td>PRECAST AND TIMBER STRUCTURES</td>
</tr>
<tr>
<td>WATER DISTRIBUTION AND DRAINAGE SYSTEMS</td>
</tr>
<tr>
<td>Department of Industrial Engineering</td>
</tr>
<tr>
<td>AIR POLLUTION CONTROL</td>
</tr>
<tr>
<td>APPLIED ACOUSTIC</td>
</tr>
<tr>
<td>COASTAL MANAGEMENT AND PROTECTION</td>
</tr>
<tr>
<td>DESIGN OF STRUCTURES FOR ENVIRONMENTAL PROTECTION</td>
</tr>
<tr>
<td>ECOTOXICOLOGY</td>
</tr>
<tr>
<td>ENVIRONMENTAL ELECTRICAL SCIENCE</td>
</tr>
<tr>
<td>ENVIRONMENTAL FLUID MECHANICS</td>
</tr>
<tr>
<td>ENVIRONMENTAL GEOTECHNICS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRAULICS</td>
</tr>
<tr>
<td>IMPACT AND LIFE CYCLE ASSESSMENT</td>
</tr>
<tr>
<td>PROJECT WORK</td>
</tr>
<tr>
<td>GEOGRAPHICAL INFORMATION SYSTEMS</td>
</tr>
<tr>
<td>GEOLOGY AND GEOCHEMISTRY</td>
</tr>
<tr>
<td>GEOLOGY AND GEOPHYSICS</td>
</tr>
<tr>
<td>GROUNDWATER HYDROLOGY</td>
</tr>
<tr>
<td>INTERNATIONAL ENVIRONMENTAL LAW</td>
</tr>
<tr>
<td>MODELLING AND CONTROL OF ENVIRONMENTAL SYSTEMS</td>
</tr>
<tr>
<td>REMEDIATION OF CONTAMINATED SITES</td>
</tr>
<tr>
<td>RIVER ENGINEERING</td>
</tr>
<tr>
<td>SOIL PROTECTION PROJECT WORK</td>
</tr>
<tr>
<td>SOLID WASTE MANAGEMENT</td>
</tr>
<tr>
<td>SUSTAINABLE AND RENEWABLE RESOURCES</td>
</tr>
<tr>
<td>WASTE MANAGEMENT IN DEVELOPING COUNTRIES</td>
</tr>
<tr>
<td>Wastewater Treatment</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Water Resources Management</td>
</tr>
<tr>
<td>Water Supply Treatment</td>
</tr>
<tr>
<td>Electrical Actuators for Aerospace Systems</td>
</tr>
<tr>
<td>Satellite Navigation</td>
</tr>
<tr>
<td>Biofuels and Sustainable Industrial Processes</td>
</tr>
<tr>
<td>Fluid Dynamics Simulation</td>
</tr>
<tr>
<td>Multiphase Thermodynamics and Transport Phenomena</td>
</tr>
<tr>
<td>Separation Unit Operations and Process Simulation</td>
</tr>
<tr>
<td>Unit Operations for the Food and Pharmaceutical Industries</td>
</tr>
<tr>
<td>Computational Electrical Engineering</td>
</tr>
<tr>
<td>Electrical and Electromagnetic Micro/Nanodevices</td>
</tr>
<tr>
<td>Electrical Machine Design</td>
</tr>
<tr>
<td>Electricity Market Economics</td>
</tr>
<tr>
<td>Electromagnetic Processing of Materials</td>
</tr>
<tr>
<td>Industrial Plasma Technologies</td>
</tr>
<tr>
<td>Road Electric Vehicles</td>
</tr>
<tr>
<td>NETWORK MODELLING</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>NETWORK SECURITY</td>
</tr>
<tr>
<td>WIRELESS SYSTEMS AND NETWORKS</td>
</tr>
<tr>
<td>INNOVATION AND PROJECT MANAGEMENT</td>
</tr>
<tr>
<td>POWER ELECTRONICS 2</td>
</tr>
<tr>
<td>ADVANCED COMMUNICATION TECHNIQUES</td>
</tr>
<tr>
<td>CHANNEL CODES AND CAPACITY</td>
</tr>
<tr>
<td>COMPUTER VISION AND 3D GRAPHICS</td>
</tr>
<tr>
<td>DIGITAL TRANSMISSION</td>
</tr>
<tr>
<td>INNOVATION AND PROJECT MANAGEMENT</td>
</tr>
<tr>
<td>NETWORK ANALYSIS AND SIMULATION</td>
</tr>
<tr>
<td>NETWORK MODELLING</td>
</tr>
<tr>
<td>NETWORK SECURITY</td>
</tr>
<tr>
<td>OPTICAL AND QUANTUM COMMUNICATIONS</td>
</tr>
<tr>
<td>PHOTONICS DEVICES</td>
</tr>
<tr>
<td>SOURCE CODING</td>
</tr>
<tr>
<td>TELECOMMUNICATIONS NETWORKS</td>
</tr>
</tbody>
</table>

department of Management and Engineering

<table>
<thead>
<tr>
<th>BUSINESS STRATEGY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INNOVATION IN PROCESSES FOR METALLIC PRODUCTS</td>
<td></td>
</tr>
<tr>
<td>OPERATIONS RESEARCH APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>PRODUCT VARIETY MANAGEMENT</td>
<td></td>
</tr>
<tr>
<td>QUALITY AND METROLOGY IN MANUFACTURING</td>
<td></td>
</tr>
<tr>
<td>SERVICE OPERATIONS MANAGEMENT</td>
<td></td>
</tr>
<tr>
<td>STATISTICAL METHODS AND APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>DESIGN WITH COMPOSITE MATERIALS</td>
<td></td>
</tr>
<tr>
<td>QUALITY AND METROLOGY IN MANUFACTURING</td>
<td></td>
</tr>
</tbody>
</table>
ASEISMIC DESIGN OF BUILDING STRUCTURES

Master degree in Civil Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: To be appointed
Credits: 9 ECTS

- Seismic action and buildings performance related to code prescribed limit states.
- General criteria for aseismic design and modelling of structures.
- Methods for analysis and verification of RC and load-bearing masonry buildings and buildings with base isolation systems. Example of design for RC buildings: comparison between modal analyses and nonlinear static analyses (push-over); comparison between frame and wall-system structures. Example of design for load-bearing masonry buildings: comparison between static linear analyses and static non-linear analyses; comparison between un-reinforced and reinforced masonry buildings.
- Basics of base-isolation systems. Example of design for buildings with base isolation.
- Numerical methods for static and dynamic analysis of structures and application with software codes.
- Experimental methods in earthquake engineering.

NEARSHORE HYDRODYNAMICS AND COASTAL PROTECTION

Master degree in Civil Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Dr. Luca Martinelli
Credits: 9 ECTS

- WAVE THEORY: elementary theory of waves, the dispersion relation, diffraction, refraction, shoaling, wave breaking process, radiation stress, wave set-up, Piling up. Longitudinal coastal currents (longshore), cross (rip) and return (undertow) currents. Distribution of the longshore currents induced by wave breaking. Sea level rise. Astronomical tide. Storm surge. Subsidence.
- TECHNOLOGIES: pontoons, boats, tugs.
Hydraulic excavators, mechanical, buckets for excavations in water. Geotextiles, laying methods. Analysis of the costs and timings. Planning areas. Impact assessment of the work, the authorization process.

- PHYSICAL AND NUMERICAL MODELING Models for wave propagation, circulation, morphological, morphodynamic models. One line, 2D, 3D models. Froude scale, theory of wave generation, laboratory instruments, calibration procedures.

- WAVE ENERGY CONVERTERS Seminar by: Prof. P. Frigaard, Aalborg University (DK), director of the Civil Engineering Department, which assesses possible interest to carry out one/two thesis in Aalborg.

- LABORATORY Exercises: 1) Calibration of wave gauges; 2) Generation of a regular wave 3) Generation of an irregular wave 4) Data acquisition 5) Optional: Perform a simple experiment (based on availability of the laboratory)

- MATLAB OR OCTAVE EXERCISES 1) Introduction; Operations between vectors; Functions; Charts; Solution dispersion relation of the waves, if/for cycles, load data from laboratory 2) Design of a nourishment, analysis of wave climate; 3) Design of nourishment, 4) design of groin system (assessment annual longitudinal transport distribution) 5) Analysis of Laboratory data: Identification of incident and reflected waves, Evaluation of transmission coefficient, of loads.
PRECAST AND TIMBER STRUCTURES

Master degree in Civil Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: To be appointed
Credits: 9 ECTS

- Common aspects: Approach to fire design of precast/prestressed RC and Timber Structures.
WATER DISTRIBUTION AND DRAINAGE SYSTEMS

Master degree in Civil Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Nadia Ursino
Credits: 9 ECTS

- Project and numerical modelling of the following hydraulic structures: water distribution network; storage tanks; drainage systems; pumping stations; infiltrations systems and other best management practices.

AIR POLLUTION CONTROL

Master Degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Antonio Mantovani
Credits: 6 ECTS
• Characteristics of the marine environment.
• Coastal climate: wind, currents, sea level oscillations.
• Hydrodynamics of coastal regions. Beach regimes, sediment characteristics. Coastal morphodynamics, coastal processes. Cross-shore and long-shore sediment transport. River deltas and inlets dynamics.
• Shore protection interventions: hard interventions (groins, detached breakwaters, etc.), soft interventions (beach nourishment) and mixed solutions. Dune systems.
• Coastal management and environmental impact assessment of different policies. Mathematical and physical models for coastal studies.
DESIGN OF STRUCTURES FOR ENVIRONMENTAL PROTECTION

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Francesco Pesavento
Credits: 9 ECTS

- Structural safety. Limit state method.
 Actions on structural systems.
- Materials for constructions. Structural
 behaviour of reinforced concrete elements.
- Bond and anchorage.
- Ultimate state for flexure and axial load.
 Ultimate state for shear and torsion.
 Ultimate state for stability. Serviceability
 limit states.
- Elements of dynamics and seismic design.
- First elements of Finite Element Method.
 Elements of design of steel structures.
- Verification of structural elements with
 Eurocodes. Numerical examples.

ECOTOXICOLOGY

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 1st Semester
Lecturer: To be appointed
Credits: 6 ECTS

- Environmental exposure and effect
 assessment of chemicals. Exposure and
 effect assessments are key elements for
 EU classifications and risk assessments
 of chemicals. The exposure assessment
 covers the environmental chemical fate
 i.e. transport, degradation, intermedia
 transfer and partitioning of chemicals in
 different parts of the environment. These
 processes like biodegradation, hydrolysis,
 photodegradation, sorption, volatilization,
 and bioaccumulation are fundamental
 for understanding the environmental
 behaviour of chemicals. The processes
 are related to the physico-chemical and
 chemical structure properties and to
 the characteristics of the environmental
 compartments (water, aquatic sediments,
 aquatic biota, soil, and air). Calculation
 exercises and computer-based models
 for distribution of compounds are used
 to illustrate the environmental chemical
 fate. The effect assessment covers
 ecotoxicological effects of chemicals. This
 subject is taught through lectures dealing
 with the theoretical aspects of toxicity
 testing and regulatory use of toxicity data
 and through field/lab experiences.
- Environmental problems from local to
 landscape scale (i.e. global warming).
• Analysis of the environmental impact of electromagnetic fields.
• Different effects due to the values of the frequency of the fields and biological effects, analysed and compared with the present regulations.
• Possible policies of prevention and protection.

ENVIRONMENTAL ELECTRICAL SCIENCE
Master degree in Environmental Engineering Department of Civil, Environmental and Architectural Engineering Language: English Teaching period: 1st / 2nd Year - 1st Semester Lecturer: Prof. Alvise Maschio Credits: 6 ECTS

• General principles: mass and energy balances; molecular diffusion; ensemble and temporal averages; ensemble mean concentration; ensemble mean cloud and ensemble mean of clouds; turbulent diffusion; laminar and turbulent dispersion.
• Outline of chemical reaction kinetics and of equilibrium chemical modeling.
• Transport and mixing in rivers: mass balance equation; Streeter-Phelps equation and its improvements; waste load allocation; Dissolved Oxygen dynamics in wide rivers and estuaries; outline of numerical modeling of the convection-diffusion equation.
• Transport and mixing in lakes: characteristics of water circulation in lakes; horizontal and vertical mixing in the Epilimnion and in the Hypolimnion; phosphorous as a limiting nutrient; mass balance of total phosphorous in lakes, nutrient loading criteria; dynamic ecosystem models for eutrophication assessments.

ENVIRONMENTAL FLUID MECHANICS
Master degree in Environmental Engineering Department of Civil, Environmental and Architectural Engineering Language: English Teaching period: 1st Year - 1st Semester Lecturer: Prof. Stefano Lanzoni Credits: 6 ECTS
ENVIRONMENTAL GEOTECHNICS

Master degree in Environmental Engineering
Department of Civil, Environmental and
Architectural Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Marco Favaretti
Credits: 6 ECTS

- COMPACTION: theory, geotechnical properties and structure of compacted soils, field compaction equipment. In situ and laboratory permeability and shear tests on compacted samples.
- SLOPE STABILITY: Peak and residual shear strength. Infinite and limited height slopes. Classification of landslides. Landslides monitoring (inclinometers, piezometers, etc.). Static and dynamics conditions, Safety factors according to limit equilibrium methods.
- GEOSYNTHETICS: designing with geotextiles, geogrids, geonets, geomembranes, geosynthetic clay liners etc.

ENVIRONMENTAL HYDRAULICS

Master degree in Environmental Engineering
Department of Civil, Environmental and
Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 2nd Semester
Lecturer: Prof. Andrea Marion
Credits: 6 ECTS

- Modern advances in environmental hydraulics, moving forward from classical theories of advection, dispersion and sediment transport treated in basic courses.
- State-of-the-art scientific knowledge and practical engineering tools (such as tracer tests) for water quality mathematical and physical modelling including surface and hyporheic transport of solutes and sediments.
- Procedures required to perform Environmental Assessment Studies on the design of hydraulic structures for irrigation, renewable energy production and river and wetland restoration.
- Risk analysis and vulnerability assessment of environmental damages caused by hydro-geological extreme events, including collapse of hydraulic structures, sewer overflow, overaggradation and flooding.
Environmental Impact and Life Cycle Assessment

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Dr. Luca Palmeri
Credits: 6 ECTS

- Environmental impact assessment procedure: legislation (European and national), administrative practice, environmental impact study document writing and tools for the evaluation of impacts.
- Strategic environmental evaluation, incidence evaluation and integrated pollution prevention and control.
- Introduction to the general theory of decision making and of decision support systems. Principal evaluation tools, e.g. multi-criteria analysis, risk analysis and life cycle assessment.
- Applications to real case studies.

Environmental Project Work

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Raffaello Cossu
Credits: 6 ECTS

- Analysis of the composition and production of solid waste in a given basin, calculation of the flows of the different fractions after separate collection, choice and dimensioning of pre-treatment systems of the non-separated fraction.
- Dimensioning of a landfill according to current legislation.
- Graphical representation of all parts of a system, in particular the bottom barrier, leachate drainage system and extraction, biogas collection and final cover.
- Writing of a Technical report, including the economical evaluation metric calculation.
- A real-scale wastewater treatment aimed at complying with legal limitations established for discharges, including civil engineering works and plants, with a view to optimization of the process and operational and maintenance costs. Preparation of graphs illustrating the general plan, block scheme, hydraulic profile, project data, current legislation, discharge limits, depuration guarantees.
- Problems connected to civil engineering works.
- The different sections of a treatment plant (water and sludge streams). The main machines used, the different hydraulic components (pipes, valves, special parts, materials, etc.) instruments. Problems in start-up, management, and maintenance. Major problematic issues in the process, design and management countermeasures.
GEOGRAPHICAL INFORMATION SYSTEMS

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 1st Semester
Lecturer: Prof. Giuseppe Salemi
Credits: 6 ECTS

- Introduction: Geographical Information Systems and related components.
- Spatial data, maps, thematic features.
- Modelling of spatial data: entities, models, structures, surfaces, networks.
- Multidimensional data management (3D and 4D). Management of attribute data.
- Data analysis: measurements, query, classification, buffer, overlay, spatial interpolation. Data quality, error budgeting and uncertainty.
- Management of a GIS project: identification, design, implementation, evaluation.

GEOLOGY AND GEOCHEMISTRY

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st Year - 1st Semester
Lecturer: Raffaele Sassi
Credits: 6 ECTS

- Propedeutical concepts. Earth internal structure and outline on plate tectonics.
- Petrology and petrography. Magmatic, sedimentary and metamorphic processes and related rocks.
- Structural geology. Folds; faults; overthrusting and tectonic nappes. Outline on mechanics of rock materials.
- Weathering. Dissolution, hydrolysis and oxidation. Silicate, carbonate and sulphide weathering.
GEOLOGY AND GEOPHYSICS

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 1st Semester
Lecturer: Prof. Silvana Martin
Credits: 6 ECTS

- Elements of cartography.
- Geographic, UTM and Gauss Boaga coordinates, topographic maps, stratimetry analysis, geological profiles.
- Elements of structural geology and geomorphology, erosion process and sediment production, geomorphological implications.
- Geological maps of Veneto, Garda, Padua, Trentino, Euganean hills, Apennine, Italy.
- Elements of geothermics. Seismic refraction and reflection survey, examples.
- Electrical survey, resistivity profiles.
- Stress and strain, elasticity, rock reology, fault mechanics, elements of seismotectonic and seismic hazard. Earthquakes seismology.
- Elements of geodynamics, mantle and core physical parametres, geothermal setting and gravity.

GROUNDWATER HYDROLOGY

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 1st Semester
Lecturer: To be appointed
Credits: 6 ECTS
INTERNATIONAL ENVIRONMENTAL LAW
Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 2nd Semester
Lecturer: To be appointed
Credits: 6 ECTS

- International environmental law and treaties.
- European environmental law.
- Environmental liabilities in major industrial accidents (Bhopal and Severo case-studies).
- IPPC Directive and the notion of “Best available techniques”.
- International waste law.
- Environmental impact assessment.
- EHS: Environment, Health and Safety.
- Cultural and legal bases of the precautionary principle.
- New technologies and the environment. A case study: nanotechnologies and environmental risk.

MODELLING AND CONTROL OF ENVIRONMENTAL SYSTEMS
Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: To be appointed
Credits: 6 ECTS

- Generalities about models, physical and mathematical models.
- Concepts of modelling: Types of models, selection of optimal complexity, sensitivity analysis, calibration and validation.
- Models of ecological processes: Physical (mass transport and balance, energetic factors, settling and resuspension), chemical (chemical reactions, hydrolysis, redox, acid-base, adsorption / desorption and ion exchange, volatilization) and biological (biological cycles in aquatic environments, photosynthesis, algal growth, zooplankton growth, fish growth, single population growth, ecotoxicological process).
- Trophic network analysis and models.
REMEDIATION OF CONTAMINATED SITES
Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Dr. Roberto Raga
Credits: 9 ECTS

- Sources to soil and groundwater pollution.
- Characteristics of the contaminants and their interactions with soil and groundwater.
- Sampling and analysis for site characterization according to the current legislation.
- Attenuation and degradation of pollutants.
- In situ and ex-situ techniques for remediation of contaminated soil and groundwater (Biological, Chemical-physical and Thermal treatment): Soil vapour extraction; Air sparging; Soil washing; Chemical oxidation; Thermal desorption and incineration; Bioremediation, Groundwater Remediation (pump and treat, reactive barriers).
- Landfill Remediation.
- Case studies.

RIVER ENGINEERING
Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st Year - 1st Semester
Lecturer: Prof. Paolo Salandin
Credits: 9 ECTS

- Aims of hydraulic structures and design regulations.
- Elements of hydrology: hydrological cycle; collection and analysis of data; geometrical representation of hydrological basins and of rivers; rainfall data analysis; flood models.
- Hydraulic of rivers and mountain streams.
- Bed-load transport; check dams; riverbank stabilization and protection; stream junctions; levee design and other river improvements; diversion work; culverts and bridges.
- Hydroelectric plants: dam regulation, weir and barrages; energy dissipation; diversion works; canals and hydraulic tunnels.
- Elements of inland waterways.
SOIL PROTECTION PROJECT WORK

Master degree in Environmental Engineering
Department of Civil, Environmental and
Architectural Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Paolo Carrubba
Credits: 6 ECTS

- European and national rules for
gotechnical design.
- Theories on the horizontal earth pressure
under static and seismic loadings.
- Rigid and flexible retaining structures.
- Soil reinforcements and composite
structures.
- Landslide stabilizations by means of active
and passive solutions.
- Landfill reclamation and stabilization.

SOLID WASTE MANAGEMENT

Master degree in Environmental Engineering
Department of Civil, Environmental and
Architectural Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Raffaello Cossu
Credits: 9 ECTS

- Waste production and quality. Current
legislations about waste management,
resource recovery and disposal of residues.
- Waste management systems and strategies.
- Waste collection and transport. Separate
collection and material recovery,
Mechanical selection schemes and
processes. Separation of single fractions.
- Recycling and recovery processes of
material (paper, plastics, glass, etc.). RDF
production. Biostabilization processes
for the biodegradable fraction. Energy
recovery from waste: biological and
thermal processes. Management and
disposal of residues.
- Landfill technologies. Processes in landfill.
Barriers, drainage and leachate collection.
Mathematical models for evaluation of
leachate and biogas production. Landfill
long term emissions. Landfill aftercare. Top
cover systems and closure of landfills.
- Biogas collection and treatment. Leachate
treatment.
SUSTAINABLE AND RENEWABLE RESOURCES
Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 1st Semester
Lecturer: To be appointed
Credits: 6 ECTS

General concepts of sustainability and sustainable development; biological and energy cycles; sustainable assessments; renewable resources; social sustainability; health & wellbeing in relation to sustainable developments.

WASTE MANAGEMENT IN DEVELOPING COUNTRIES
Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 2nd Semester
Lecturer: To be appointed
Credits: 6 ECTS
- Water resources and the hydrologic cycle: recalling basic concepts from probability and hydrology.
- Modelling and forecasting of rainfall processes: i) Zero-dimensional rainfall models: poissoninan models; Cluster models (Bartlett Lewis, Neymann-Scott); ii) Rainfall forecasting (outline): global circulation models, limited area models, downscaling, meteorologic forecasting and flood protection.
- Soil moisture dynamics: i) soil moisture dynamics and runoff production; ii) stochastic modelling of soil moisture; iii) soil moisture and plant nutrition.
- Streamflow characteristics: i) floods and droughts; ii) continuous models of the hydrologic response; iii) stochastic analysis of streamflows series (duration curves, distributions of extremes).
- Water resources management models: i) reservoirs: floods mitigation, industrial and agricultural supply; ii) Reservoirs regulation; iii) flood retention plains.
- Irrigation systems and schemes.
WATER SUPPLY TREATMENT

Master degree in Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Language: English
Teaching period: 1st / 2nd Year - 2nd Semester
Lecturer: To be appointed
Credits: 6 ECTS

ELECTRICAL ACTUATORS FOR AEROSPACE SYSTEMS

Master degree in Aerospace Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Nicola Bianchi
Credits: 9 ECTS

- Recall of electromechanical energy conversion.
- Analysis of the more used electrical machines: DC motor, induction motor, synchronous machine.
- Classification and machine design criteria. Motors with very high dynamics.
- Power electronics: components, static converters, rectifiers, chopper, inverter, PWM technique.
- Criteria for the choice of electrical machines and drives: load characteristics, mechanical characteristics of the electrical machines, choice of the proper type of drive and control.
- Design criteria, magnetic computation, losses computation, thermal computation.
- Outline of the design of the drive control with speed loop and position loop, according to some electrical machine topologies, block scheme, regulator gains choice.
- Solutions of electrical motors and converters suitable for fault-tolerant applications (temporary or permanent faults).
SATELLITE NAVIGATION

Master degree in Aerospace Engineering
Department of Industrial Engineering
Language: English
Teaching period: 1st / 2nd Year - 2nd Semester
Lecturer: Prof. Alessandro Caporali
Credits: 9 ECTS

• Understanding coordinates, coordinate systems, least squares.
• The propagation of microwaves through the ionosphere and troposphere. Multipath.
• Architecture of a GNSS: the Space Segment, the Control Segment and the User Segment. GPS vs. GLONASS vs. Galileo: code, phase and navigation message. The Time To First Fix. Assisted GPS. EGNOS and WAAS.
• How to compute the coordinates and clock offsets of the GNSS satellites from broadcast ephemeris or postprocessed products.
• The pseudorange data and how to invert them to estimate user coordinates and their accuracy.
• Tracking user coordinates in time: The state transition matrix; epochwise estimates by least squares vs. filtering. Kalman filter formulation. Estimation of coordinates, velocity and acceleration. Inclusion of stochastic error models into the filter.
• How to pack everything into a product: a Google Earth navigator vs. a navigator based on vector cartography.

BIOFUELS AND SUSTAINABLE INDUSTRIAL PROCESSES

Master degree in Chemical and Process Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Fabrizio Bezzo
Credits: 6 ECTS

• Open issues in the search for alternative energy for transport
• An overview on production systems: bioethanol (I and II generation), biodiesel (including production form microalgae), biogas
• Scheduling batch processes
• The effect of uncertainty in assessing bioenergy systems: impact on profitability analysis
• Energy integration for sustainable production processes: pinch analysis.
• Pinch analysis and process design: distillation columns, evaporation systems, integration between process and heat and power systems
• Water system design for process sustainability: targeting maximum water reuse and minimum wastewater treatment
• Water consumption in bioenergy processes.
FLUID DYNAMICS SIMULATION

Master degree in Chemical and Process Engineering
Department of Industrial Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Fabrizio Bezzo
Credits: 6 ECTS

- Introduction to computational fluid dynamics (CFD). CFD application to the design of process industry equipment.
- Modelling approaches for turbulent flows.
- Introduction to the finite volume method for the solution of conservation equations.
- CFD modelling for the simulation of multiphase and reacting flows.
- Design and scale-up of mixing equipment for homogeneous, multiphase and reactive systems.
- Introduction to Ansys Fluent software.

MULTIPHASE THERMODYNAMICS AND TRANSPORT PHENOMENA

Master degree in Chemical and Process Engineering
Department of Industrial Engineering
Language: English
Teaching period: 1st Year - 1st Semester
Lecturer: Dr. Nicola Elvassore
Credits: 9 ECTS

- Introduction to statistical mechanics.
- Multiscale thermodynamics; form microscale to macroscale.
- Techniques of molecular simulations: Montecarlo and molecular dynamics.
- Thermodynamics of systems containing associating fluids, polymers, membranes, hydrogels and electrolytes.
- Thermodynamic of colloidal systems.
- Osmotic pressure and thermodynamics of biological systems.
- Non-equilibrium thermodynamics in multiphase systems.
• Methods for the calculation of vapor-liquid, liquid-liquid and vapor-liquid-liquid equilibria of both binary and multicomponent systems, and their relevance for the design of separation unit operations with both liquid and gaseous mixtures.

• Design and operation of separation processes: flash, distillation, absorption, stripping, solvent extraction. Apparatus and equipments for thermal separation units involving simultaneous mass and heat transfer: flash drums, distillation towers, absorption and stripping columns. Sizing and rating of sieve trays columns and of packed columns. Equipment for solvent extraction systems: mixer-settlers and continuous extraction columns.

• Block flow diagrams and process flow diagrams in process simulation. Definition, structure and functioning of kinetics, mass/heat transfer and thermodynamics models. Selection of simulation models. Commercial simulators: ASPEN+ and PROII. Simulation and analysis of unit operations and complex chemical processes with recycles.

UNIT OPERATIONS FOR THE FOOD AND PHARMACEUTICAL INDUSTRIES

Master degree in Chemical and Process Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Dr. Andrea Claudio Santomaso
Credits: 6 ECTS

• Powdered materials and granules as raw materials and final products in the food and pharmaceutical industries.
• Properties and characterization of finely divided solid materials.
• Solid-solid and solid-fluid interactions.
• Distributed properties (size and shape). Bulk properties characterization: density, porosity, flowability, wettability.
• Sizing and size separation: choice and design principles of sifting and screening devices.
• Static analysis of stresses in solids (Mohr -coulomb failure criterion).
• Storage of powders: stresses in silos; design of silos and hoppers according to Jenike procedure; flow function and flow factors.
• Kinematics and dynamic analysis: rheology of granular materials and powders.
• Mixing and segregation of solids: industrial mixers; choice and scale-up of mixers. Sampling.
• Granulation: agglomeration mechanisms; industrial granulators; choice and scale-up of mixers.
• Commination: physical principles of size reduction; energy required in milling; choice of milling devices.
• Crystallization: principles of crystals formation; type of industrial crystallizers; choice and design criteria.
COMPUTATIONAL ELECTRICAL ENGINEERING
Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Dr. Piergiorgio Alotto
Credits: 9 ECTS

- Elettromagnetism: Maxwell’s partial differential equations in terms of potentials, constitutive equations, boundary and interface conditions in terms of potentials, symmetries.
- Finite differences: Regular and irregular grids, curved boundaries, Theta method.
- Finite elements: Triangular and quadrilateral elements, shape functions, weighted residual and variational formulations, applications to 2D, axisymmetric and 3D problems, pre- and postprocessing, applications and critical review.
- Finite difference time domain method.
- Automatic optimization of electromagnetic devices: Main classes of methods, sensitivity, Pareto optimality.

ELECTRICAL AND ELECTROMAGNETIC MICRO/NANODEVICES
Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Daniele Desideri
Credits: 9 ECTS

- Introduction. Insights into electromagnetic fields and into materials.
- Electrical and electromagnetic modelling and applications of: micro/nanostructured materials for electromagnetic shielding; ferroelectric and piezoelectric materials; energy harvesting; micro-sensors; micro-nano interconnections and circuits; carbon nanotubes and graphene.
- Realization and characterization of thin films with gas phase deposition: chemical vapour deposition (CVD) and physical vapour deposition (PVD); magnetron sputtering; measurement techniques on thin films.
ELECTRICAL MACHINE DESIGN

Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Nicola Bianchi
Credits: 9 ECTS

- Design and analysis of electric machines. Design of electrical machines for standard applications. Design of single- and three-phase reactors and transformers, with air and oil cooling system. Synchronous machines. Induction motors. DC motors.
- Innovative tools and techniques for the electrical machine design. Optimization techniques as design tools. Applications of electromagnetic field computation tools (Laboratory of finite element analysis of electrical machines).

ELECTRICITY MARKET ECONOMICS

Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Arturo Lorenzoni
Credits: 6 ECTS

- Price regulation; organisation of the electricity industry.
- Plant despatch and merit order: generation in a competitive market.
- Contracts.
- The operation of the power exchange and the capacity market.
- The transmission line: benefits of the interconnection and optimal transmission capacity. Congestion management.
- Markets for the environment: green certificates, carbon credits, energy efficiency. Financial products for the power market.
ELECTROMAGNETIC PROCESSING OF MATERIALS

Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Dr. Michele Forzan
Credits: 6 ECTS

- Induction heating systems. Design of an inductor.
- Arc furnaces, resistors ovens, heating by direct current, radiofrequency and microwaves heating.
- Practical laboratory tests or computer models.

INDUSTRIAL PLASMA TECHNOLOGIES

Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Piergiorgio Sonato
Credits: 6 ECTS

- Discharges in the plasma: dark discharge, breakdown, corona discharge, glow discharge, arc, capacitive and inductive discharges.
- Fundamentals of plasma physics, main plasma parameters, interaction between particles, diffusion and mobility, fluid motion of charged particles, Townsend theory on the ionization, Paschen curve.
- Plasma diagnostics, electrostatic probes.
- Plasma torches: welding and cutting torches, metallurgy and waste treatment torches.
- Surface modifications and coatings by plasma, physical vapour deposition, chemical vapour deposition, plasma enhanced vapour deposition, magnetron sputtering, plasma sterilization.
- Plasma processes in the semiconductor technology, plasma etching.
- Plasma display panels, plasma lighting systems.
- MHD conversion. Spatial propulsion.
- Laboratories: vacuum technology, DC discharges: electrical parameters and plasma parameters, magnetron sputtering: Paschen curve measurement, visit to the space propulsion laboratory.
ROAD ELECTRIC VEHICLES

Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Giuseppe Buja
Credits: 6 ECTS

- Course introduction (program, outline of electric vehicles history).
- Environmental and energy challenges for road transportation: combustion vs. electromobility.
- Fundamentals of road propulsion (longitudinal and lateral dynamics, driving cycles, energy analysis).
- Electric vehicles classification (Full, Hybrid; Battery, Fuel cell).
- Architecture of the fully electric vehicles.
- Electric drive vs. internal combustion engine propulsion (characteristics, brushless DC drives).
- Technology and characteristics of storage/generation devices of electric energy [batteries (Pb, NiMH, Li), supercapacitors, fuel cells and hydrogen tanks].
- Hybrid electric vehicles [architectures and energy management, characteristics of the basic architectures (series, parallel and series-parallel)].
- Charging infrastructures (battery charger, V2G capabilities, standards).
- Stability control systems (ABS and TC, ESP).
- Drive-by-wire systems (architectures, components).
- Study cases: design and demonstration (electric scooter, city car and bike).

SYSTEMS FOR AUTOMATION

Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Giuseppe Buja
Credits: 9 ECTS

- Course introduction (program, outline of electric systems for automation).
- Instantaneous power theory (power theories, p-q powers, current equations and their space and complex representation, p-q power calculation for distorted and unbalanced three-phase systems).
- Grid-connected converter control [devices, converter modelling, sensors, grid synchronization, system architecture, voltage/current control, active power delivery and utility disturbances compensation].
- Microprocessor control systems MCS [structure, operation and modelling of a MCS, outline of digital control (discretization techniques, z-transform)].
- Industrial communication networks (digital communication techniques, ISO/OSI model, physical and data link layers, CAN protocol).
- Mechanical systems [mathematical description, electromechanical analogies, inertial coupling and mechanical resonances].
- Motion system modelling [drive modelling, mechanical sensors (accelerometers, tachometers, encoders)].
- Motion system control (power rate, current/torque control, acceleration control, speed control, position control, design by Matlab/Simulink).
THERMIONUCLEAR FUSION

Master degree in Electrical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Paolo Bettini
Credits: 6 ECTS

- World Energy and the Role for Fusion: the existing energy options.
- Introduction to Plasma Physics and Controlled Fusion.
- Electromagnetic fields and forces, charged particle trajectories, fluid equations, ideal MHD.
- Plasma confinement: magnetic confinement, axisymmetric toroidal equilibrium.
- Magnetic field calculations, magnet design and optimization, coil forces, superconducting coils.
- Power supplies, energy storage and transfer systems.
- Plasma Heating: Ohmic Heating (OH), Neutral Beam Injection (NBI), Radio Frequency (RF) heating.
- Plasma facing components: Blanket, Divertor.
- Diagnostics: Magnetic measurements, active wave diagnostics.
- Fusion Power plants: DEMO.

BIOFUELS AND SUSTAINABLE INDUSTRIAL PROCESSES

Master degree in Energy Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Fabrizio Bezzo
Credits: 6 ECTS

- Open issues in the search for alternative energy for transport
- An overview on production systems: bioethanol (I and II generation), biodiesel (including production form microalgae), biogas
- Scheduling batch processes
- The effect of uncertainty in assessing bioenergy systems: impact on profitability analysis
- Energy integration for sustainable production processes: pinch analysis.
- Pinch analysis and process design: distillation columns, evaporation systems, integration between process and heat and power systems
- Water system design for process sustainability: targeting maximum water reuse and minimum wastewater treatment
- Water consumption in bioenergy processes.
ENERGY AND BUILDINGS

Master degree in Energy Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: To be appointed
Credits: 6 ECTS

- Indoor environmental quality (comfort, ventilation and lighting). Determination of weather conditions for the energy calculation of a building.
- Determination of main characteristics and problems related to building envelope: insulation, thermal bridges, condensation.
- Determination of main characteristics and problems related to glazing surfaces: lighting transmission, solar energy transmission, shading, daylighting and glare.

ELECTROMAGNETIC PROCESSING OF MATERIALS

Master degree in Materials Engineering
Department of Industrial Engineering
Language: English
Teaching period: 1st / 2nd Year - 1st Semester
Lecturer: Dr. Michele Forzan
Credits: 9 ECTS

- Induction heating systems. Design of an inductor.
- Arc furnaces, resistors ovens, heating by direct current, radiofrequency and microwaves heating.
- Practical laboratory tests or computer models.
GLASS SCIENCE AND TECHNOLOGY

Master degree in Materials Engineering
Department of Industrial Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Paolo Colombo
Credits: 6 ECTS

- Structure of inorganic glasses and proposed models. Brief introduction to non-oxide glasses.
- Properties: rheological properties (viscosity); thermal properties (specific heat, thermal conductivity, thermal expansion); chemical properties (glass surface, acid and alkaline attack, water attack and weathering); electrical properties (ionic and electronic conductivity, semiconductor glasses); optical properties (refraction, reflection, absorption, transmission, colored glasses, photochromic glasses, photosensitive glasses, electrochromic glasses, optical fibers).
- Glass technology: raw materials and calculation of batch composition.
- Types of industrial furnaces. Melting, homogeneizing, fining and conditioning. Annealing.
- Flat glass: sheet glass, plate glass, float glass. Fusion process.

IRONMAKING AND STEELMAKING

Master degree in Materials Engineering
Department of Industrial Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Manuele Dabalà
Credits: 6 ECTS

- Raw material for iron and steel production: an overview on iron ore extraction and enrichment processes; coals, limestone.
- Process physicochemical fundamentals.
- Physicochemicals of blast furnace fundamentals: the reduction of iron ores.
- Overview of Blast Furnace Process.
- Balances of Blast Furnace.
- Physicochemicals of oxygen steelmaking process.
- Overview of oxygen steelmaking process.
- Balances of BOF converter.
- Electric Steelmaking: the Electric Arc Furnace.
- Secondary steelmaking.
- Vacuum processes.
- High alloyed steelmaking: Stainless steel production, AOD process.
- Continuous Casting: overview and controls of microstructure.
- Remelting processes.
- Foundry: Overview and processes for moulding.
NANOSTRUCTURED MATERIALS

Master degree in Materials Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Alessandro Martucci
Credits: 9 ECTS

- Physical chemistry of solid surface: surface energy, electrostatic and steric stabilization.
- Chemical synthesis of nanoparticles (metals, semiconductors, oxides), physical properties, applications.
- Chemical synthesis of nanorods, nanowires and nanotubes, physical properties and applications.
- Thin films depositions.
- Nanostructures fabricated by physical techniques: lithography and microfabrication.
- Nanocomposites: synthesis and properties.

INTEGRATED DESIGN OF PRODUCT, PROCESS AND PRODUCTION SYSTEMS

Master degree in Mechanical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: To be appointed
Credits: 6 ECTS
MODELLING AND SIMULATION OF MECHANICAL SYSTEMS
Master degree in Mechanical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Roberto Lot
Credits: 6 ECTS

- Theory of multibody systems: kinematic and dynamic analysis, algorithmic and numerical implications.
- Elements of 3D geometrical modelling (with CATIA).
- Multibody modelling bricks: kinematic joints, contact models, shock models, friction models, tire models.
- Modelling of complex mechanical systems: model design and management, sub-modelling, system control.
- Implementation and discussion of many cases study (with LMS Virtual Lab Motion).

QUALITY OF INDUSTRIAL PRODUCTION
Master degree in Mechanical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Enrico Savio
Credits: 6 ECTS

- Introduction to quality systems. Quality assurance of manufacturing processes: testing of machine tools, statistical process control, evaluation of process capabilities.
- Surface metrology. Verification of roughness in industrial practice. Advanced mapping of surface geometry, nanometrology of surfaces and microparts.
- Product conformity assessment: tolerance verification, decision rules in acceptance testing, procedures for the quantification of measurement uncertainty. Quality assurance of measuring systems.

Note: the course includes 16 hours of hands-on experiments; measured data to be analysed by the student as homework and discussed at the final colloquium.
SPORTS ENGINEERING AND REHABILITATION DEVICES

Master degree in Mechanical Engineering
Department of Industrial Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Dr. Nicola Petrone
Credits: 6 ECTS

Fundamentals:
- Basic knowledge of anatomy and physiology of the musculoskeletal system.
- Quantitative anthropometry.
- Modelling equilibrium and motion of the segments of the human body.
- Analysis of gait and running.

Methodologies:
- Sensors and systems for the evaluation of kinematic, kinetic and physiological parameters during the sport exercise: motion capture systems, force platforms, pressure insoles, electromyography.
- Design and calibration of strain gauge multi-component load cells for the collection of functional loads at the human body – equipment interfaces.
- Musculoskeletal simulation codes.
- Design of a research project for the statistical evaluation of sport and rehabilitation devices.

Applications:
- Classification of sport equipment and rehabilitation devices.
- Identification of performance, comfort and safety parameters of sport – rehabilitation equipment.
- Knowledge of safety standards, implementation of standard tests methods.
- Functional evaluation of sport equipment, orthoses, assistive technologies, prostheses and training or rehabilitation machines.

TELECOMMUNICATIONS NETWORKS

Master degree in Automation Engineering
Department of Information Engineering
Language: English
Teaching period: 1st / 2nd Year - 1st Semester
Lecturer: Dr. Andrea Zanella
Credits: 9 ECTS

The module aims at providing both practical and methodological tools for network design, analysis and planning. Some preliminary lessons will review the basic technical aspects of networking, such as terminology, standards, protocols structure, communication devices, and so on. The major part of the course is devoted to the study of the most prominent networking protocols and algorithms, with reference to state of the art technologies. In particular, the course will be introductory to the architecture and the protocols of Internet, and to the performance analysis of the most common link control and transmission control protocols. Some of the topics that will be considered by the course are the following:

- Data traffic sources: multimedia streams and content (characterization and modeling)
- Circuit switched networks: basics of Telephone and long-distance networks
- Packet switched networks: basics of data networks (Ethernet, WiFi, Bluetooth)
- ISO/OSI and TCP/IP protocol stacks: protocols and interfaces (MAC, DLL, NET, TRAN)
- Quality of Service: Congestion control and Scheduling algorithms
- Application layer: basics of DNS, SMPT, FTP, HTTP, P2P.
• Quick review of basic networking and performance analysis concepts, such as terminology, standards, protocols structure, communication devices, and queueing theory.
• Study of the most prominent networking protocols and algorithms, with reference to state of the art technologies.
• Introduction to the Internet architecture and protocols, and to the performance analysis of the most common medium access control, link layer and transport protocols.
• Laboratory: Static routing, Cisco router operating system (IOS), RIP (with Quagga & router), Socket programming, TCP & UDP (flow control, congestion control, IP fragmentation), Firewall.
INNOVATION AND PROJECT MANAGEMENT

Master degree in Computer Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Moreno Muffatto
Credits: 6 ECTS

- Characteristics of a project. The basic parameters of the project (scope, resources, time, cost, quality). The phases of the project life cycle. Stakeholders and their influence on the project. The areas of knowledge in the management of a project (scope, time, cost, quality, risk, human resources, communication, procurement, integration). Project planning. Project Quality Management. Project Risk Management. The organizational dimension in project management. Creation and management of the project team. The relationship aspects in project management (communication, team building, leadership). The economic and financial dimension of the project (evaluation criteria, the economic control of the project). Monitoring and control of the project. Project closure and lessons learned.

- Types of innovation projects. The sources of innovation. The process of developing a new product (phases and methodologies). The creativity dimension in the development of a new product/service. The protection of intellectual property (patents, trademarks, etc.). Organizational and management development team. Innovative processes and relationships between companies. Communication and marketing of innovation.

NETWORK MODELLING

Master degree in Computer Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Michele Zorzi
Credits: 9 ECTS

- Probability theory review.
- Markov chains, their limiting behaviour.
- Poisson processes; renewal processes; applications and examples.
The course aims at providing some advanced knowledge on protocol stacks for wireless communications, including the analysis of distributed wireless networks, state of the art wireless technologies and current trends. The topics that will be covered will range from link layer technology to routing over ad hoc wireless networks and application layer coding. Selected topics will be presented using recent research papers from the literature as a source of reference. In the first part of the course, the student will be introduced to the technology used in modern ISO/OSI stacks, characterizing the performance of the single layers and then of the protocol stack as a whole. In the second half of the course, the focus will be on distributed ad hoc network architectures, with particular emphasis on distributed Wi-Fi networks (IEEE802.11 a/g/h/n) and wireless sensor networks (IEEE 802.15.4). The corresponding technologies (IEEE 802.11 and 802.15.4) will be introduced in detail (PHY/MAC/routing), characterizing their performance through suitable mathematical tools. The course will be research oriented and, at the end of it, the student will have a clear view on modern protocol technology, and will be able to carry out its performance evaluation through tractable mathematical tools. Some of the topics that will be considered by the course are:

- Hybrid ARQ systems: mathematical modeling and performance evaluation.
- Application layer coding: fountain codes, theory and applications.
- IEEE 802.11 a/g/h/n and IEEE 802.15.4:
Characteristics of a project. The basic parameters of the project (scope, resources, time, cost, quality). The phases of the project life cycle. Stakeholders and their influence on the project. The areas of knowledge in the management of a project (scope, time, cost, quality, risk, human resources, communication, procurement, integration). Project planning. Project Quality Management. Project Risk Management. The organizational dimension in project management. Creation and management of the project team. The relationship aspects in project management (communication, team building, leadership). The economic and financial dimension of the project (evaluation criteria, the economic control of the project). Monitoring and control of the project. Project closure and lessons learned.

Types of innovation projects. The sources of innovation. The process of developing a new product (phases and methodologies). The creativity dimension in the development of a new product / service. The protection of intellectual property (patents, trademarks, etc.). Organizational and management development team. Innovative processes and relationships between companies. Communication and marketing of innovation.

POWER ELECTRONICS 2

Master degree in Electronical Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Dr. Luca Corradini
Credits: 6 ECTS

- Fourth order DC-DC converters Cuk and SEPIC.
- State-space models of switched-mode power converters. State-space averaging techniques in CCM and DCM.
- Single-phase inverters: overview and main modulation techniques.
- High-quality Power Factor Correctors (PFC): main topologies and control techniques; small-signal modelling in CCM and DCM.
- Three-phase inverters: square-wave and PWM modulations, control of the load neutral point; alpha-beta transform and Space Vector Modulation.
- Use of MATLAB/Simulink for system-level simulation and design of converters.

ADVANCED COMMUNICATION TECHNIQUES

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: To be appointed
Credits: 6 ECTS

- Introduction, dispersive channel model, filterbank modulation.
- Peak to average power reduction (PAPR): the problem. Clipping for PAPR. Tone reservation and tone injection. Single carrier-frequency division multiple access (SC-FDMA)
- Matlab and C tools for simulation of communication systems.
- Spatial multiplexing (SM) minimum mean square error receiver ML detection for SM Sphere decoder.
CHANNEL CODES AND CAPACITY

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Tomaso Erseghe
Credits: 9 ECTS

- Hard versus soft decoding of block codes.
- Introduction to linear codes.
- Comparing codes performance via bit error rate and spectral efficiency.
- Convolutional codes: properties, performance, and efficient decoding using the Viterbi algorithm.
- Codes on graphs: convolutional, turbo, LDPC, repeat-accumulate, BICM, and trellis codes.
- Decoding via message passing algorithms.
- Analytical study of message passing performance for LDPCs.
- Shannon's capacity theorem: proof of direct and converse theorems.
- Capacity for Gaussian, waveform, and parallel channels.
- Capacity and coding for MIMO and multiple-antenna systems.
- Introduction to network information theory and network coding.

COMPUTER VISION AND 3D GRAPHICS

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Guido Maria Cortelazzo
Credits: 6 ECTS

The course offers a guided tour of the computer vision and computer graphics topics needed for current virtual and augmented reality applications.

The course rationale is the introduction of the notions and techniques to go a) from 3D scenes to images by way of real imaging systems; b) from images to 3D scene models; a) and from 3D models to images by way of virtual cameras. Part a) explains the operation and the mathematical models of current imaging systems (e.g., video-cameras, Time of Flight systems, kinect) in the language of computational photography. Part b) covers two topics: 3D reconstruction from images (with special focus on stereo and active stereo systems) and the 3D modeling pipeline (i.e., the procedures to obtain full 3D models from depth maps). Part (c) presents the rendering methods as approximate solution of the rendering equation.

Some of the topics considered by the course are:
- Image formation: mathematical models of cameras and Time of Flight systems.
- Camera calibration: procedures for metrical measurements from images.
- Computational stereopsis: 3D scene structure derived from 2 or more images obtained from calibrated cameras.
- Structure from motion: 3D scene structure derived from 1 or more calibrated moving cameras.
- Un-calibrated 3D reconstruction: 3D scene structure derived from un-calibrated cameras.
• 3D registration: pairwise and global registration (or SLAM) of depth-maps into a point cloud.
• 3D data integration and geometrical simplification: integration of overlapping point clouds into tessellated surfaces and their simplification.
• Rendering methods: ray casting, ray tracing, radiosity and rasterization.

DIGITAL TRANSMISSION

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Nevio Benvenuto
Credits: 9 ECTS

• Basedband and passband (baseband equivalent model) digital transmission systems.
• Wiener filter. Applications to channel estimation and spectral estimation by prediction.
• Adaptive transversal filters: LMS and RLS algorithms.
• Radio link: discrete time equivalent models, random models, simulation models.
• Transmission over dispersive channels: intersymbol interference (ISI), Nyquist criterion for the absence of ISI, performance evaluation in the presence of ISI.
• Equalization: linear and non linear (cancelation based).
• Optimum data detection: Viterbi algorithm and Forward-Backward algorithm.
• Synchronization: timing and carrier phase recovery for baseband and passband systems.
• Multicarrier systems (OFDM): architecture, orthogonality conditions, performance and efficient implementation.
INNOVATION AND PROJECT MANAGEMENT

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Moreno Muffatto
Credits: 6 ECTS

• Characteristics of a project. The basic parameters of the project (scope, resources, time, cost, quality). The phases of the project life cycle. Stakeholders and their influence on the project. The areas of knowledge in the management of a project (scope, time, cost, quality, risk, human resources, communication, procurement, integration). Project planning. Project Quality Management. Project Risk Management. The organizational dimension in project management. Creation and management of the project team. The relationship aspects in project management (communication, team building, leadership). The economic and financial dimension of the project (evaluation criteria, the economic control of the project). Monitoring and control of the project. Project closure and lessons learned.

• Types of innovation projects. The sources of innovation. The process of developing a new product (phases and methodologies). The creativity dimension in the development of a new product / service. The protection of intellectual property (patents, trademarks, etc.). Organizational and management development team. Innovative processes and relationships between companies. Communication and marketing of innovation.

NETWORK ANALYSIS AND SIMULATION

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Michele Zorzi
Credits: 6 ECTS

• Theoretical foundations of simulation, confidence interval; simulation tools.
• Analytical tools for network analysis.
• Simulation lab.
• Study of innovative schemes as published in recent scientific papers.
• Course project.
NETWORK MODELLING

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 1st Year - 2nd Semester
Lecturer: Prof. Michele Zorzi
Credits: 9 ECTS

- Probability theory review.
- Markov chains, their limiting behaviour.
- Poisson processes; renewal processes; applications and examples.

NETWORK SECURITY

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Dr. Nicola Laurenti
Credits: 6 ECTS

- Basic security notions and definitions.
- Unconditional vs computational security.
- Cryptographic and non cryptographic security mechanisms.
- Network security protocols at different layers.
- Further security issues for wireless, ad hoc and mobile networks.
OPTICAL AND QUANTUM COMMUNICATIONS

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Dr. Roberto Corvaja
Credits: 6 ECTS

- Optical communication systems.
- Characteristics of the optical fibre.
- Impulses in the optical digital link.
- Poisson processes and shot noise characterization.
- Error probability.
- Optical amplification.
- Coherent optical transmission.
- Introduction to quantum mechanics.
- Hilbert spaces, operators and projectors.
- Quantum measurements.
- Quantum decision theory.
- Coherent states.
- Quantum telecommunication systems.
- Applications of Q-TLC.

PHOTONICS DEVICES

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Marco Santagiustina
Credits: 6 ECTS

- Introduction to the applications of photonic devices.
- Guided optics: planar waveguides and optical fibres.
- Anisotropic media: birefringence and polarization mode dispersion.
- Nonlinear media: cubic nonlinearity.
- Active and passive devices.
- Optical amplifiers: doped fibre, semiconductor, Raman, Brillouin and parametric.
- Optical sensors for monitoring civil structures, environment, biosensors.
SOURCE CODING

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Prof. Giancarlo Calvagno
Credits: 6 ECTS

TELECOMMUNICATIONS NETWORKS

Master degree in Telecommunications Engineering
Department of Information Engineering
Language: English
Teaching period: 1st Year - 1st Semester
Lecturer: Dr. Andrea Zanella
Credits: 9 ECTS

The module aims at providing both practical and methodological tools for network design, analysis and planning. Some preliminary lessons will review the basic technical aspects of networking, such as terminology, standards, protocols structure, communication devices, and so on. The major part of the course is devoted to the study of the most prominent networking protocols and algorithms, with reference to state of the art technologies. In particular, the course will be introductory to the architecture and the protocols of Internet, and to the performance analysis of the most common link control and transmission control protocols. Some of the topics that will be considered by the course are the following:
- Data traffic sources: multimedia streams and content (characterization and modeling)
- Circuit switched networks: basics of Telephone and long-distance networks
- Packet switched networks: basics of data networks (Ethernet, WiFi, Bluetooth)
- ISO/OSI and TCP/IP protocol stacks: protocols and interfaces (MAC, DLL, NET, TRAN)/li>
- Quality of Service: Congestion control and Scheduling algorithms
- Application layer: basics of DNS, SMPT, FTP, HTTP, P2P.
The course aims at providing some advanced knowledge on protocol stacks for wireless communications, including the analysis of distributed wireless networks, state of the art wireless technologies and current trends. The topics that will be covered will range from link layer technology to routing over ad hoc wireless networks and application layer coding. Selected topics will be presented using recent research papers from the literature as a source of reference. In the first part of the course, the student will be introduced to the technology used in modern ISO/OSI stacks, characterizing the performance of the single layers and then of the protocol stack as a whole. In the second half of the course, the focus will be on distributed ad hoc network architectures, with particular emphasis on distributed Wi-Fi networks (IEEE802.11 a/g/h/n) and wireless sensor networks (IEEE 802.15.4). The corresponding technologies (IEEE 802.11 and 802.15.4) will be introduced in detail (PHY/MAC/routing), characterizing their performance through suitable mathematical tools. The course will be research oriented and, at the end of it, the student will have a clear view on modern protocol technology, and will be able to carry out its performance evaluation through tractable mathematical tools. Some of the topics that will be considered by the course are:

- Hybrid ARQ systems: mathematical modeling and performance evaluation.
- Application layer coding: fountain codes, theory and applications.
- IEEE 802.11 a/g/h/n and IEEE 802.15.4:
 - channel access technology, adaptive modulation and coding techniques, dynamic rate control algorithms.
- Wireless sensor networks: relevant channel access and routing algorithms, analytical models and their performance analysis, study of systems powered by energy harvesting sources.
BUSINESS STRATEGY

• The concept of strategy, mission and vision.
• Tools for the Analysis of Firm’s Strategy (as is): Five Forces Analysis - Analysis of the forces affecting competition in a market; Positioning Analysis; Generic competitive strategies; Value Chain analysis; Resource Based View of the Firm – Determination resources significant in generating firm profits and the extent to which resources are adapted to the firm’s external environment; Organization structure and management system
• Strategies for growth (to be): Direction of growth: market penetration, globalization, vertical integration, horizontal integration; External growth vs. internal growth: Corporate finance, M&A, the Private Equity support; Blue Ocean Strategy; Balanced score Cards
• Business plan
• Strategy tools: Negotiation Strategy.

INNOVATION IN PROCESSES FOR METALLIC PRODUCTS

• The impact of innovation in the iron and steel industries, in the blast furnaces and electric furnaces. Innovative processes in cast iron foundry (austempering ductile iron).
• Innovative thin rolled metal products for automotive applications (High Strength Steels, Advanced High Strength Steels, Ultra High Strength Steels).
• Powder metallurgy: mechanical, chemical and electro-chemical methods for powder production. Cost analysis of products realized by powder metallurgy and comparison with traditional processes.
• Innovative processes in aluminium foundry: vacuum die casting, thixocasting, rheocasting, squeeze casting, lost foam.
• Innovative treatments of metal surfaces (coatings production with flame and plasma techniques, PVD and CVD processes, painting and anodizing).
• Metal Matrix Composites (MMC).
• Nanomaterials: characteristics and properties. Material and process selection.
• Practice with the use of the Cambridge Engineering Selector.
• Life Cycle Assessment and Life Cycle Costs. Assessment of costs in metallurgical processes.
• Numerical simulation of metallurgical processes.
• Elementary queueing theory, theory and actual applications.

• Form postponement types and market contingencies. Organizational changes for form postponement.
• Modularization of a product family. Relationships between product configuration, component standardization, product modularization and form postponement.
• The information systems support for Mass Customization. How to integrate PDM, CRM and product configurator.
• The information-processing view (IPV) of organization design. Analyzing product configurator introduction and form postponement application through the lens of IPV.
QUALITY AND METROLOGY IN MANUFACTURING
Master degree in Engineering and Management (Vicenza campus)
Department of Management and Engineering
Language: English
Teaching period: 2nd Year - 2nd Semester
Lecturer: Dr. Simone Carmignato
Credits: 6 ECTS

SERVICE OPERATIONS MANAGEMENT
Master degree in Engineering and Management (Vicenza campus)
Department of Management and Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Andrea Vinelli
Credits: 6 ECTS

• Service Operations Management: an introduction. Challenges facing service operations managers. Different types of service processes. The nature and the power of the service concept. Focused and unfocused service operations.
• Service people: managing and motivating service providers. The role of scripts and levels of employee discretion.
• Resource utilisation: service capacity management. Defining capacity strategies. The coping zone. How network technology and information are transforming services.
STATISTICAL METHODS AND APPLICATIONS

Master degree in Engineering and Management (Vicenza campus)
Department of Management and Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Luigi Salmaso
Credits: 6 ECTS

- Elements of univariate and multivariate statistical methods. Elements of descriptive statistics: frequency, indices of synthesis (position, variability and shape) and graphical representations (histogram, boxplot, scatterplot). Elements of probability theory: discrete and continuous probability distributions.
- Nonparametric statistics: Resampling methods: univariate and multivariate permutation tests.

DESIGN WITH COMPOSITE MATERIALS

Master degree in Product Innovation Engineering (Vicenza campus)
Department of Management and Engineering
Language: English
Teaching period: 2nd Year - 1st Semester
Lecturer: Prof. Marino Quaresimin
Credits: 6 ECTS

- General characteristics of polymer composites, outline of the main production processes and comparison with other structural materials.
- Theory of elasticity for anisotropic bodies.
- Micromechanical analysis, elastic properties and strength of unidirectional lamina.
- Classical lamination theory.
- Criteria of static failure. Resistance and stiffness oriented design of composite structures.
- Notch and edge effects in composite structures.
- Thermal stresses.
- Sandwich Structures.
- Experimental characterization of composite laminates and NDT.
- Strategies for numerical analysis of composite structures – Examples of applications.
INTRODUCTION TO QUALITY MANAGEMENT SYSTEMS. ACCREDITATION AND CERTIFICATION. MEASUREMENT MANAGEMENT SYSTEMS, REQUIREMENTS FOR MEASUREMENT PROCESSES AND MEASURING EQUIPMENT. CALIBRATION OF MEASURING SYSTEMS. TRACEABILITY OF MEASUREMENTS. QUALITY ASSURANCE, STATISTICAL PROCESS CONTROL, PROCESS CAPABILITY. GEOMETRICAL PRODUCTS SPECIFICATIONS AND VERIFICATION. METHODS FOR DETERMINATION OF MEASUREMENT UNCERTAINTY.

DIMENSIONAL AND GEOMETRICAL METROLOGY: SIMPLE AND ADVANCED MEASURING SYSTEMS. COORDINATE METROLOGY: COORDINATE MEASURING SYSTEMS, TACTILE PROBING, OPTICAL METHODS AND X-RAY METHODS. METROLOGICAL ROOMS. SURFACE METROLOGY: ROUGHNESS END SURFACE TEXTURE CHARACTERIZATION, 3D SURFACE CHARACTERIZATION, MICRO- AND NANO-MEASURING SYSTEMS.